A006384
Number of sensed planar maps with n edges.
Original entry on oeis.org
1, 2, 4, 14, 57, 312, 2071, 15030, 117735, 967850, 8268816, 72833730, 658049140, 6074058060, 57106433817, 545532037612, 5284835906037, 51833908183164, 514019531037910, 5147924676612282, 52017438279806634, 529867070532745464
Offset: 0
- V. A. Liskovets, A census of nonisomorphic planar maps, in Algebraic Methods in Graph Theory, Vol. II, ed. L. Lovasz and V. T. Sos, North-Holland, 1981.
- V. A. Liskovets, Enumeration of nonisomorphic planar maps, Selecta Math. Sovietica, 4 (No. 4, 1985), 303-323.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. R. S. Walsh, personal communication.
- Alois P. Heinz, Table of n, a(n) for n = 0..300
- Valery A. Liskovets, Enumerative formulas for unrooted planar maps: a pattern, Electron. J. Combin., 11:1 (2004), R88.
- Valery A. Liskovets, A reductive technique for enumerating non-isomorphic planar maps, Discrete Math. 156 (1996), no. 1-3, 197--217. MR1405018 (97f:05087) - From _N. J. A. Sloane_, Jun 03 2012
- Timothy R. Walsh, Generating nonisomorphic maps without storing them, SIAM J. Algebraic Discrete Methods 4 (1983), no. 2, 161-178.
- N. J. A. Sloane, Notes
- T. R. S. Walsh, Number of sensed planar maps with n edges and m vertices
- T. R. S. Walsh, Data (Preprint 1, Part 1)
- T. R. S. Walsh, Data (Preprint 1, Part 2)
- T. R. S. Walsh, Data (Preprint 1, Part 3)
- T. R. S. Walsh, Notes
- T. R. S. Walsh, Number of sensed planar maps with n edges and m vertices
- T. R. S. Walsh & N. J. A. Sloane, Correspondence, 1991
- Nicholas C. Wormald, Counting unrooted planar maps, Discrete Math. 36 (1981), no. 2, 205-225.
- Nicholas C. Wormald, On the number of planar maps, Can. J. Math. 33.1 (1981), 1-11. (Annotated scanned copy)
-
with(numtheory): a:= n-> `if` (n=0, 1, floor (2*3^n /(n+1)/(n+2) *binomial(2*n, n) +add (phi(n/t) *3^t *binomial(2*t, t), t=divisors(n) minus {n}))/2/n +`if` (irem(n,2)=1, 2*3^((n-1)/2) /(n+1) *binomial(n-1, (n-1)/2), 2*(n-1) *3^((n-2)/2) /n/(n+2) *binomial(n-2, (n-2)/2))): seq (a(n), n=0..30); # Alois P. Heinz, Apr 24 2009
-
a[0] = 1; a[n_] := (1/(2n))*(2*(3^n/((n+1)*(n+2)))*Binomial[2n, n] + Sum[ EulerPhi[n/k]*3^k*Binomial[ 2k, k], {k, Most[ Divisors[n]]}]) + q[n]; q[n_?OddQ] := 2*(3^((n-1)/2)/(n+1))*Binomial[ n-1, (n-1)/2]; q[n_?EvenQ] := 2*(n-1)*(3^((n-2)/2)/(n*(n+2)))*Binomial[ n-2, (n-2)/2]; Table[ a[n], {n, 0, 21}] (* Jean-François Alcover, after Valery A. Liskovets *)
A000087
Number of unrooted nonseparable planar maps with n edges and a distinguished face.
Original entry on oeis.org
2, 1, 2, 4, 10, 37, 138, 628, 2972, 14903, 76994, 409594, 2222628, 12281570, 68864086, 391120036, 2246122574, 13025721601, 76194378042, 449155863868, 2666126033850, 15925105028685, 95664343622234, 577651490729530
Offset: 1
- V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n=1..200
- W. G. Brown, Enumeration of non-separable planar maps, Canad. J. Math., 15 (1963), 526-545.
- W. G. Brown, Enumeration of non-separable planar maps
- V. A. Liskovets and T. R. Walsh, Counting unrooted maps on the plane, Advances in Applied Math., 36, No.4 (2006), 364-387.
-
q[n_] := If[EvenQ[n], 0, 2(n+1)Binomial[3(n+1)/2, (n+1)/2]/(3(3n-1)(3n+1)) ]; a[n_] := (1/(3n))((n+2)Binomial[3n, n]/((3n-2)(3n-1)) + Sum[EulerPhi[ n/k] Binomial[3k, k], {k, Divisors[n] // Most}]) + q[n]; Array[a, 30] (* Jean-François Alcover, Feb 04 2016, after Valery A. Liskovets *)
-
q(n) = if(n%2, 2*(n + 1)*binomial(3*(n + 1)/2, (n + 1)/2) / (3*(3*n - 1)*(3*n + 1)), 0);
a(n) = (1/(3*n)) * ((n + 2) * binomial(3*n, n)/((3*n - 2) * (3*n - 1)) + sum(k=1, n - 1, if(Mod(n, k)==0, eulerphi(n/k) * binomial(3*k, k)))) + q(n); \\ Indranil Ghosh, Apr 04 2017
A006403
Number of unsensed 2-connected planar maps with n edges.
Original entry on oeis.org
0, 1, 2, 3, 6, 15, 36, 114, 396, 1565, 6756, 31563, 154370, 785113, 4099948, 21870704, 118624544, 652485364, 3631820462, 20426666644, 115949791342, 663640383400, 3826858500878, 22218232389849, 129802836253994
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Timothy R. Walsh, personal communication.
A006406
Number of sensed 2-connected simple planar maps with n edges.
Original entry on oeis.org
1, 1, 2, 4, 9, 24, 81, 274, 1071, 4357, 18416, 80040, 356109, 1610910, 7399114
Offset: 3
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A069726
Number of rooted planar bi-Eulerian maps with 2n edges. Bi-Eulerian: all its vertices and faces are of even valency.
Original entry on oeis.org
1, 1, 6, 54, 594, 7371, 99144, 1412802, 21025818, 323686935, 5120138790, 82812679560, 1364498150904, 22839100002036, 387477144862128, 6651170184185802, 115346229450879978, 2018559015390399615, 35610482089433479410, 632770874050702595670, 11317118106279639106530
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..650
- M. Bousquet-Mélou and A. Jehanne, Polynomial equations with one catalytic variable, algebraic series and map enumeration, arXiv:math/0504018 [math.CO], 2005.
- M. Bousquet-Mélou and G. Schaeffer, Enumeration of planar constellations, Adv. in Appl. Math. v.24 (2000), 337-368.
- V. A. Kazakov, M. Staudacher and Th. Wynter, Character expansion methods for matrix models of dually weighted graphs, arxiv:hep-th/9502132, 1995; Commun. Math. Phys. 177 (1996), 451-468.
- V. A. Liskovets and T. R. S. Walsh, Enumeration of Eulerian and unicursal planar maps, Discr. Math., 282 (2004), 209-221.
-
s := 4*(4-81*z)^(1/2): u := 36*I*z^(1/2): a := (s+u)^(1/3): b := (s-u)^(1/3):
gf := 1 + ((b+a)*s + 108*I*z^(1/2)*(b-a) - 32*(9*z+1))/(432*z):
simplify(series(gf, z, 22)): seq(coeff(%, z, n), n = 0..20);
# Peter Luschny, May 19 2024
-
Join[{1},Table[3^(n-1) Binomial[3n,n+1]/(n(2n+1)),{n,20}]] (* Harvey P. Dale, Oct 18 2013 *)
-
A069726(n)=if(n,3^(n-1)*binomial(3*n,n+1)/n/(2*n+1),1) \\ M. F. Hasler, Mar 26 2012
Entry revised by Editors of the OEIS, Mar 26 - 27 2012
A342061
Triangle read by rows: T(n,k) is the number of sensed 2-connected (nonseparable) planar maps with n edges and k vertices, n >= 2, 2 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 8, 3, 1, 1, 4, 16, 16, 4, 1, 1, 5, 38, 63, 38, 5, 1, 1, 7, 72, 218, 218, 72, 7, 1, 1, 8, 134, 622, 1075, 622, 134, 8, 1, 1, 10, 224, 1600, 4214, 4214, 1600, 224, 10, 1, 1, 12, 375, 3703, 14381, 22222, 14381, 3703, 375, 12, 1
Offset: 2
Triangle begins:
1;
1, 1;
1, 1, 1;
1, 2, 2, 1;
1, 3, 8, 3, 1;
1, 4, 16, 16, 4, 1;
1, 5, 38, 63, 38, 5, 1;
1, 7, 72, 218, 218, 72, 7, 1;
1, 8, 134, 622, 1075, 622, 134, 8, 1;
...
-
\\ See section 4 of Walsh reference.
T(n)={
my(B=matrix(n, n, i, j, if(i+j <= n+1, (2*i+j-2)!*(2*j+i-2)!/(i!*j!*(2*i-1)!*(2*j-1)!))));
my(C(i,j)=((i+j-1)*(i+1)*(j+1)/(2*(2*i+j-1)*(2*j+i-1)))*B[(i+1)/2,(j+1)/2]);
my(D(i,j)=((j+1)/2)*B[i/2, (j+1)/2]);
my(E(i,j)=((i-1)*(j-1) + 2*(i+j)*(i+j-1))*B[i,j]);
my(F(i,j)=if(!i, j==1, ((i+j)*(6*j+2*i-5)*j*(2*i+j-1)/(2*(2*i+1)*(2*j+i-2)))*B[i,j]) + if(j-1, binomial(i+2,2)*B[i+1,j-1]));
vector(n, n, vector(n, i, my(j=n+1-i); B[i,j]
+ (i+j)*if(i%2, if(j%2, C(i,j), D(j,i)), if(j%2, D(i,j)))
+ sumdiv(i+j, d, if(d>1, eulerphi(d)*( if(i%d==0, E(i/d, j/d) ) + if(i%d==1, F((i-1)/d, (j+1)/d)) + if(j%d==1, F((j-1)/d, (i+1)/d)) )))
)/(2*n+2));
}
{ my(A=T(10)); for(n=1, #A, print(A[n])) }
A006444
Number of achiral 2-connected planar maps with n edges.
Original entry on oeis.org
0, 1, 2, 3, 6, 14, 30, 77, 196, 525, 1414, 3960, 11056, 31636, 90818, 264657, 774146, 2289787, 6798562, 20354005, 61164374, 184985060, 561433922, 1712696708, 5241637812
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. R. S. Walsh, personal communication.
A006404
Number of sensed 2-connected maps with n edges and without faces of degree 2.
Original entry on oeis.org
1, 1, 2, 5, 10, 29, 96, 339, 1320, 5473
Offset: 3
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Showing 1-8 of 8 results.
Comments