cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A006384 Number of sensed planar maps with n edges.

Original entry on oeis.org

1, 2, 4, 14, 57, 312, 2071, 15030, 117735, 967850, 8268816, 72833730, 658049140, 6074058060, 57106433817, 545532037612, 5284835906037, 51833908183164, 514019531037910, 5147924676612282, 52017438279806634, 529867070532745464
Offset: 0

Views

Author

Keywords

Comments

The planar maps considered are connected and may contain loops and parallel edges. - Andrew Howroyd, Jan 13 2025

References

  • V. A. Liskovets, A census of nonisomorphic planar maps, in Algebraic Methods in Graph Theory, Vol. II, ed. L. Lovasz and V. T. Sos, North-Holland, 1981.
  • V. A. Liskovets, Enumeration of nonisomorphic planar maps, Selecta Math. Sovietica, 4 (No. 4, 1985), 303-323.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. R. S. Walsh, personal communication.

Crossrefs

Antidiagonal sums of A379430.
Cf. A000168 (rooted), A006385 (unsensed), A006443 (achiral), A006402 (2-connected).

Programs

  • Maple
    with(numtheory): a:= n-> `if` (n=0, 1, floor (2*3^n /(n+1)/(n+2) *binomial(2*n, n) +add (phi(n/t) *3^t *binomial(2*t, t), t=divisors(n) minus {n}))/2/n +`if` (irem(n,2)=1, 2*3^((n-1)/2) /(n+1) *binomial(n-1, (n-1)/2), 2*(n-1) *3^((n-2)/2) /n/(n+2) *binomial(n-2, (n-2)/2))): seq (a(n), n=0..30); # Alois P. Heinz, Apr 24 2009
  • Mathematica
    a[0] = 1; a[n_] := (1/(2n))*(2*(3^n/((n+1)*(n+2)))*Binomial[2n, n] + Sum[ EulerPhi[n/k]*3^k*Binomial[ 2k, k], {k, Most[ Divisors[n]]}]) + q[n]; q[n_?OddQ] := 2*(3^((n-1)/2)/(n+1))*Binomial[ n-1, (n-1)/2]; q[n_?EvenQ] := 2*(n-1)*(3^((n-2)/2)/(n*(n+2)))*Binomial[ n-2, (n-2)/2]; Table[ a[n], {n, 0, 21}] (* Jean-François Alcover, after Valery A. Liskovets *)

Formula

For n>0, a(n) = (1/2n)[A'(n)+sum_{kA000010, q(n)=(n+3) A'(n-1/2)/4 if n is odd and q(n) = (n-1)A'(n-2/2)/4 if n is even, where A'(n)=A000168(n), the number of rooted maps. - Valery A. Liskovets, May 27 2006
Equivalently, a(n) = (1/2n)[2*3^n/((n+1)(n+2))*binomial(2n,n) +sum_{kValery A. Liskovets, May 27 2006
a(n) ~ 12^n / (sqrt(Pi) * n^(7/2)). - Vaclav Kotesovec, Sep 12 2014

Extensions

More terms from Alois P. Heinz, Apr 24 2009

A000087 Number of unrooted nonseparable planar maps with n edges and a distinguished face.

Original entry on oeis.org

2, 1, 2, 4, 10, 37, 138, 628, 2972, 14903, 76994, 409594, 2222628, 12281570, 68864086, 391120036, 2246122574, 13025721601, 76194378042, 449155863868, 2666126033850, 15925105028685, 95664343622234, 577651490729530
Offset: 1

Views

Author

Keywords

Comments

The number of unrooted non-separable n-edge maps in the plane (planar with a distinguished outside face). - Valery A. Liskovets, Mar 17 2005

References

  • V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A046653.

Programs

  • Mathematica
    q[n_] := If[EvenQ[n], 0, 2(n+1)Binomial[3(n+1)/2, (n+1)/2]/(3(3n-1)(3n+1)) ]; a[n_] := (1/(3n))((n+2)Binomial[3n, n]/((3n-2)(3n-1)) + Sum[EulerPhi[ n/k] Binomial[3k, k], {k, Divisors[n] // Most}]) + q[n]; Array[a, 30] (* Jean-François Alcover, Feb 04 2016, after Valery A. Liskovets *)
  • PARI
    q(n) = if(n%2, 2*(n + 1)*binomial(3*(n + 1)/2, (n + 1)/2) / (3*(3*n - 1)*(3*n + 1)), 0);
    a(n) = (1/(3*n)) * ((n + 2) * binomial(3*n, n)/((3*n - 2) * (3*n - 1)) + sum(k=1, n - 1, if(Mod(n, k)==0, eulerphi(n/k) * binomial(3*k, k)))) + q(n); \\ Indranil Ghosh, Apr 04 2017

Formula

a(n) = (1/3n)[(n+2)binomial(3n, n)/((3n-2)(3n-1)) + Sum_{0A000010, q(n)=0 if n is even and q(n)=2(n+1)binomial(3(n+1)/2, (n+1)/2)/(3(3n-1)(3n+1)) if n is odd. - Valery A. Liskovets, Mar 17 2005
a(n) ~ 3/(8 * sqrt(3*Pi))*(27/4)^n / n^(5/2). - Cedric Lorand, Apr 18 2022

Extensions

More terms from T. D. Noe, Mar 14 2007
Name corrected by Cyril Banderier, Apr 04 2017
Name clarified by Andrew Howroyd, Mar 29 2021

A006403 Number of unsensed 2-connected planar maps with n edges.

Original entry on oeis.org

0, 1, 2, 3, 6, 15, 36, 114, 396, 1565, 6756, 31563, 154370, 785113, 4099948, 21870704, 118624544, 652485364, 3631820462, 20426666644, 115949791342, 663640383400, 3826858500878, 22218232389849, 129802836253994
Offset: 1

Views

Author

Keywords

Comments

The maps considered here may include parallel edges. - Andrew Howroyd, Jan 13 2025

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Timothy R. Walsh, personal communication.

Crossrefs

Row sums of A379432.
Cf. A000139 (rooted), A006385, A006402 (sensed), A006407 (without parallel edges), A006444 (achiral).

Formula

a(n) = (A006402(n) + A006444(n))/2. - Andrew Howroyd, Jan 13 2025

Extensions

a(23)-a(25) added by Andrew Howroyd, Jan 13 2025

A006406 Number of sensed 2-connected simple planar maps with n edges.

Original entry on oeis.org

1, 1, 2, 4, 9, 24, 81, 274, 1071, 4357, 18416, 80040, 356109, 1610910, 7399114
Offset: 3

Views

Author

Keywords

Comments

A simple planar map is a planar map without loops or parallel edges.
Equivalently, a(n) is the number of embeddings on the sphere of 2-connected planar graphs with n edges up to orientation preserving isomorphisms. - Andrew Howroyd, Mar 27 2021

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006402, A006404, A006407 (unsensed case), A342059, A379437 (rooted).

Formula

a(n) = Sum_{k=3..n} A342059(k, n+2-k). - Andrew Howroyd, Mar 27 2021

Extensions

a(11) and a(12) from Sean A. Irvine, Apr 02 2017
a(13)-a(17) from Andrew Howroyd, Mar 27 2021

A069726 Number of rooted planar bi-Eulerian maps with 2n edges. Bi-Eulerian: all its vertices and faces are of even valency.

Original entry on oeis.org

1, 1, 6, 54, 594, 7371, 99144, 1412802, 21025818, 323686935, 5120138790, 82812679560, 1364498150904, 22839100002036, 387477144862128, 6651170184185802, 115346229450879978, 2018559015390399615, 35610482089433479410, 632770874050702595670, 11317118106279639106530
Offset: 0

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Comments

Also counts rooted planar 3-constellations with n triangles: rooted planar maps with bicolored faces having n black triangular faces and an arbitrary number of white faces of degrees multiple to 3. - Valery A. Liskovets, Dec 01 2003

Crossrefs

Programs

  • Maple
    s := 4*(4-81*z)^(1/2): u := 36*I*z^(1/2): a := (s+u)^(1/3): b := (s-u)^(1/3):
    gf := 1 + ((b+a)*s + 108*I*z^(1/2)*(b-a) - 32*(9*z+1))/(432*z):
    simplify(series(gf, z, 22)): seq(coeff(%, z, n), n = 0..20);
    # Peter Luschny, May 19 2024
  • Mathematica
    Join[{1},Table[3^(n-1) Binomial[3n,n+1]/(n(2n+1)),{n,20}]] (* Harvey P. Dale, Oct 18 2013 *)
  • PARI
    A069726(n)=if(n,3^(n-1)*binomial(3*n,n+1)/n/(2*n+1),1)  \\ M. F. Hasler, Mar 26 2012

Formula

a(n) = 3^(n-1)*A000139(n).
a(0)=1, a(n) = 3^(n-1)*binomial(3n, n+1)/(n(2n+1)) for n >= 1.
G.f.: A(x) = (1 + 3*y - y^2)/3 where 3*x^2*y^3 - y + 1 = 0.
G.f. satisfies A(z) = 1 -47*z +3*z^2 +3*z*(22-9*z)*A(z) +9*z*(9*z-2)*A(z)^2 -81*z^2*A(z)^3.
a(n) ~ 2^(-2*n-1)*3^(4*n-1/2)/(sqrt(Pi)*n^(5/2)). - Ilya Gutkovskiy, Dec 04 2016
D-finite with recurrence 2*(n+1)*(2*n+1)*a(n) -9*(3*n-1)*(3*n-2)*a(n-1)=0. - R. J. Mathar, Mar 29 2023
G.f. 1/3 - 2/(27*z) + sqrt(4 - 81*z)*((sqrt(4 - 81*z)/2 + 9*i*sqrt(z)/2)^(1/3) + (sqrt(4 - 81*z)/2 - 9*i*sqrt(z)/2)^(1/3))/(54*z) - (((sqrt(4 - 81*z)/2 + 9*i*sqrt(z)/2)^(1/3) - (sqrt(4 - 81*z)/2 - 9*i*sqrt(z)/2)^(1/3))*i)/(2*sqrt(z)), where i = sqrt(-1). - Karol A. Penson, May 19 2024

Extensions

Entry revised by Editors of the OEIS, Mar 26 - 27 2012

A342061 Triangle read by rows: T(n,k) is the number of sensed 2-connected (nonseparable) planar maps with n edges and k vertices, n >= 2, 2 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 8, 3, 1, 1, 4, 16, 16, 4, 1, 1, 5, 38, 63, 38, 5, 1, 1, 7, 72, 218, 218, 72, 7, 1, 1, 8, 134, 622, 1075, 622, 134, 8, 1, 1, 10, 224, 1600, 4214, 4214, 1600, 224, 10, 1, 1, 12, 375, 3703, 14381, 22222, 14381, 3703, 375, 12, 1
Offset: 2

Views

Author

Andrew Howroyd, Mar 30 2021

Keywords

Comments

The number of faces is n + 2 - k.

Examples

			Triangle begins:
  1;
  1, 1;
  1, 1,   1;
  1, 2,   2,   1;
  1, 3,   8,   3,    1;
  1, 4,  16,  16,    4,   1;
  1, 5,  38,  63,   38,   5,   1;
  1, 7,  72, 218,  218,  72,   7, 1;
  1, 8, 134, 622, 1075, 622, 134, 8, 1;
  ...
		

Crossrefs

Column k=3 is A001399(n-3).
Row sums are A006402.
Cf. A082680 (rooted), A239893, A342059.

Programs

  • PARI
    \\ See section 4 of Walsh reference.
    T(n)={
      my(B=matrix(n, n, i, j, if(i+j <= n+1, (2*i+j-2)!*(2*j+i-2)!/(i!*j!*(2*i-1)!*(2*j-1)!))));
      my(C(i,j)=((i+j-1)*(i+1)*(j+1)/(2*(2*i+j-1)*(2*j+i-1)))*B[(i+1)/2,(j+1)/2]);
      my(D(i,j)=((j+1)/2)*B[i/2, (j+1)/2]);
      my(E(i,j)=((i-1)*(j-1) + 2*(i+j)*(i+j-1))*B[i,j]);
      my(F(i,j)=if(!i, j==1, ((i+j)*(6*j+2*i-5)*j*(2*i+j-1)/(2*(2*i+1)*(2*j+i-2)))*B[i,j]) + if(j-1, binomial(i+2,2)*B[i+1,j-1]));
      vector(n, n, vector(n, i, my(j=n+1-i); B[i,j]
        + (i+j)*if(i%2, if(j%2, C(i,j), D(j,i)), if(j%2, D(i,j)))
        + sumdiv(i+j, d, if(d>1, eulerphi(d)*( if(i%d==0, E(i/d, j/d) ) + if(i%d==1, F((i-1)/d, (j+1)/d)) + if(j%d==1, F((j-1)/d, (i+1)/d)) )))
       )/(2*n+2));
    }
    { my(A=T(10)); for(n=1, #A, print(A[n])) }

Formula

T(n,k) = T(n, n+2-k).

A006444 Number of achiral 2-connected planar maps with n edges.

Original entry on oeis.org

0, 1, 2, 3, 6, 14, 30, 77, 196, 525, 1414, 3960, 11056, 31636, 90818, 264657, 774146, 2289787, 6798562, 20354005, 61164374, 184985060, 561433922, 1712696708, 5241637812
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. R. S. Walsh, personal communication.

Crossrefs

Cf. A006402 (sensed), A006403 (unsensed), A006443 (connected), A006445 (3-connected).

A006404 Number of sensed 2-connected maps with n edges and without faces of degree 2.

Original entry on oeis.org

1, 1, 2, 5, 10, 29, 96, 339, 1320, 5473
Offset: 3

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006384, A006402, A006405 (unsensed).

Extensions

a(11) and a(12) from Sean A. Irvine, Apr 02 2017
Showing 1-8 of 8 results.