cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A006385 Number of unsensed planar maps with n edges.

Original entry on oeis.org

1, 2, 4, 14, 52, 248, 1416, 9172, 66366, 518868, 4301350, 37230364, 333058463, 3057319072, 28656583950, 273298352168, 2645186193457, 25931472185976, 257086490694917, 2574370590192556, 26010904915620261
Offset: 0

Views

Author

Keywords

Comments

The planar maps considered are connected and may contain loops and parallel edges. - Andrew Howroyd, Jan 13 2025

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. R. S. Walsh, personal communication.

Crossrefs

Antidiagonal sums of A277741.
Column k=0 of A379439.
Cf. A000168 (rooted), A006384 (sensed), A006443 (achiral), A006403 (2-connected), A090376.
Cf. A006387 (genus 1), A214814 (genus 2), A214815 (genus 3), A214816.

Formula

a(n) = (A006384(n) + A006443(n))/2. - Andrew Howroyd, Jan 13 2025

Extensions

a(18)-a(19) added by Andrew Howroyd, Jan 13 2025
a(20) added by Andrew Howroyd, Jan 20 2025

A006402 Number of sensed 2-connected (nonseparable) planar maps with n edges.

Original entry on oeis.org

1, 2, 3, 6, 16, 42, 151, 596, 2605, 12098, 59166, 297684, 1538590, 8109078, 43476751, 236474942, 1302680941, 7256842362, 40832979283, 231838418310, 1327095781740, 7653155567834, 44434752082990, 259600430870176, 1525366978752096, 9010312253993072, 53485145730576790
Offset: 2

Views

Author

Keywords

Comments

Some people begin this 2,1,2,3,6,..., others begin it 0,1,2,3,6,....
The dual of a nonseparable map is nonseparable, so the class of all nonseparable planar maps is self-dual. The maps considered here are unrooted and sensed and may include loops and parallel edges. - Andrew Howroyd, Mar 29 2021

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. R. S. Walsh, personal communication.

Crossrefs

Row sums of A342061.
Cf. A000087 (with distinguished faces), A000139 (rooted), A005645, A006403 (unsensed), A006406 (without loops or parallel edges).

Programs

  • PARI
    \\ here r(n) is A000139(n-1).
    r(n)={4*binomial(3*n,n)/(3*(3*n-2)*(3*n-1))}
    a(n)={(r(n) + sumdiv(n, d, if(dAndrew Howroyd, Mar 29 2021

Extensions

Terms a(23) and beyond from Andrew Howroyd, Mar 29 2021

A006407 Number of unsensed 2-connected simple planar maps with n edges.

Original entry on oeis.org

1, 1, 2, 4, 8, 20, 58, 177, 630, 2410, 9772, 41423, 181586, 814412, 3722445
Offset: 3

Views

Author

Keywords

Comments

A simple planar map is a planar map without loops or parallel edges.
Equivalently, a(n) is the number of embeddings on the sphere of 2-connected planar graphs with n edges. - Andrew Howroyd, Mar 27 2021

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006403, A006405, A006406 (sensed case), A342060, A379437 (rooted).

Formula

a(n) = Sum_{k=3..n} A342060(k, n+2-k). - Andrew Howroyd, Mar 27 2021

Extensions

a(11) and a(12) from Sean A. Irvine, Apr 03 2017
a(13)-a(17) from Andrew Howroyd, Mar 27 2021

A006405 Number of unsensed 2-connected maps with n edges and without faces of degree 2.

Original entry on oeis.org

1, 1, 2, 5, 9, 24, 70, 222, 785, 3055
Offset: 3

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006385, A006403, A006405 (sensed).

Extensions

a(11) and a(12) from Sean A. Irvine, Apr 02 2017

A006444 Number of achiral 2-connected planar maps with n edges.

Original entry on oeis.org

0, 1, 2, 3, 6, 14, 30, 77, 196, 525, 1414, 3960, 11056, 31636, 90818, 264657, 774146, 2289787, 6798562, 20354005, 61164374, 184985060, 561433922, 1712696708, 5241637812
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. R. S. Walsh, personal communication.

Crossrefs

Cf. A006402 (sensed), A006403 (unsensed), A006443 (connected), A006445 (3-connected).

A379432 Triangle read by rows: T(n,k) is the number of unsensed 2-connected (nonseparable) planar maps with n edges and k vertices, n >= 2, 2 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 7, 3, 1, 1, 4, 13, 13, 4, 1, 1, 5, 29, 44, 29, 5, 1, 1, 7, 51, 139, 139, 51, 7, 1, 1, 8, 92, 370, 623, 370, 92, 8, 1, 1, 10, 147, 913, 2307, 2307, 913, 147, 10, 1, 1, 12, 240, 2048, 7644, 11673, 7644, 2048, 240, 12, 1, 1, 14, 357, 4295, 22344, 50174, 50174, 22344, 4295, 357, 14, 1
Offset: 2

Views

Author

Andrew Howroyd, Jan 14 2025

Keywords

Comments

The maps considered here may include parallel edges.
The number of faces is n + 2 - k.

Examples

			Triangle begins:
   1;
   1,  1;
   1,  1,   1;
   1,  2,   2,   1;
   1,  3,   7,   3,    1;
   1,  4,  13,  13,    4,    1;
   1,  5,  29,  44,   29,    5,   1;
   1,  7,  51, 139,  139,   51,   7,   1;
   1,  8,  92, 370,  623,  370,  92,   8,  1;
   1, 10, 147, 913, 2307, 2307, 913, 147, 10, 1;
   ...
		

Crossrefs

Row sums are A006403.
Cf. A082680 (rooted), A342061 (sensed), A212438 (3-connected), A277741, A342060.

Formula

T(n,k) = T(n, n+2-k).
Showing 1-6 of 6 results.