cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A006013 a(n) = binomial(3*n+1,n)/(n+1).

Original entry on oeis.org

1, 2, 7, 30, 143, 728, 3876, 21318, 120175, 690690, 4032015, 23841480, 142498692, 859515920, 5225264024, 31983672534, 196947587823, 1219199353190, 7583142491925, 47365474641870, 296983176369495, 1868545312633440, 11793499763070480
Offset: 0

Views

Author

Keywords

Comments

Enumerates pairs of ternary trees [Knuth, 2014]. - N. J. A. Sloane, Dec 09 2014
G.f. (offset 1) is series reversion of x - 2x^2 + x^3.
Hankel transform is A005156(n+1). - Paul Barry, Jan 20 2007
a(n) = number of ways to connect 2*n - 2 points labeled 1, 2, ..., 2*n-2 in a line with 0 or more noncrossing arcs above the line such that each maximal contiguous sequence of isolated points has even length. For example, with arcs separated by dashes, a(3) = 7 counts {} (no arcs), 12, 14, 23, 34, 12-34, 14-23. It does not count 13 because 2 is an isolated point. - David Callan, Sep 18 2007
In my 2003 paper I introduced L-algebras. These are K-vector spaces equipped with two binary operations > and < satisfying (x > y) < z = x > (y < z). In my arXiv paper math-ph/0709.3453 I show that the free L-algebra on one generator is related to symmetric ternary trees with odd degrees, so the dimensions of the homogeneous components are 1, 2, 7, 30, 143, .... These L-algebras are closely related to the so-called triplicial-algebras, 3 associative operations and 3 relations whose free object is related to even trees. - Philippe Leroux (ph_ler_math(AT)yahoo.com), Oct 05 2007
a(n-1) is also the number of projective dependency trees with n nodes. - Marco Kuhlmann (marco.kuhlmann(AT)lingfil.uu.se), Apr 06 2010
Number of subpartitions of [1^2, 2^2, ..., n^2]. - Franklin T. Adams-Watters, Apr 13 2011
a(n) = sum of (n+1)-th row terms of triangle A143603. - Gary W. Adamson, Jul 07 2011
Also the number of Dyck n-paths with up steps colored in two ways (N or A) and avoiding NA. The 7 Dyck 2-paths are NDND, ADND, NDAD, ADAD, NNDD, ANDD, and AADD. - David Scambler, Jun 24 2013
a(n) is also the number of permutations avoiding 213 in the classical sense which can be realized as labels on an increasing strict binary tree with 2n-1 nodes. See A245904 for more information on increasing strict binary trees. - Manda Riehl Aug 07 2014
With offset 1, a(n) is the number of ordered trees (A000108) with n non-leaf vertices and n leaf vertices such that every non-leaf vertex has a leaf child (and hence exactly one leaf child). - David Callan, Aug 20 2014
a(n) is the number of paths in the plane with unit east and north steps, never going above the line x=2y, from (0,0) to (2n+1,n). - Ira M. Gessel, Jan 04 2018
a(n) is the number of words on the alphabet [n+1] that avoid the patterns 231 and 221 and contain exactly one 1 and exactly two occurrences of every other letter. - Colin Defant, Sep 26 2018
a(n) is the number of Motzkin paths of length 3n with n of each type of step, such that (1, 1) and (1, 0) alternate (ignoring (-1, 1) steps). All paths start with a (1, 1) step. - Helmut Prodinger, Apr 08 2019
Hankel transform omitting a(0) is A051255(n+1). - Michael Somos, May 15 2022
If f(x) is the generating function for (-1)^n*a(n), a real solution of the equation y^3 - y^2 - x = 0 is given by y = 1 + x*f(x). In particular 1 + f(1) is Narayana's cow constant, A092526, aka the "supergolden" ratio. - R. James Evans, Aug 09 2023
This is instance k = 2 of the family {c(k, n+1)}A130564.%20_Wolfdieter%20Lang">{n>=0} described in A130564. _Wolfdieter Lang, Feb 04 2024
Also the number of quadrangulations of a (2n+4)-gon which do not contain any diagonals incident to a fixed vertex. - Esther Banaian, Mar 12 2025

Examples

			a(3) = 30 since the top row of Q^3 = (12, 12, 5, 1).
G.f. = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 + 21318*x^7 + ... - _Michael Somos_, May 15 2022
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

These are the odd indices of A047749.
Cf. A305574 (the same with offset 1 and the initial 1 replaced with 5).
Cf. A130564 (comment on c(k, n+1)).

Programs

  • Haskell
    a006013 n = a007318 (3 * n + 1) n `div` (n + 1)
    a006013' n = a258708 (2 * n + 1) n
    -- Reinhard Zumkeller, Jun 22 2015
    
  • Magma
    [Binomial(3*n+1,n)/(n+1): n in [0..30]]; // Vincenzo Librandi, Mar 29 2015
    
  • Mathematica
    Binomial[3#+1,#]/(#+1)&/@Range[0,30]  (* Harvey P. Dale, Mar 16 2011 *)
  • PARI
    A006013(n) = binomial(3*n+1,n)/(n+1) \\ M. F. Hasler, Jan 08 2024
    
  • Python
    from math import comb
    def A006013(n): return comb(3*n+1,n)//(n+1) # Chai Wah Wu, Jul 30 2022
  • Sage
    def A006013_list(n) :
        D = [0]*(n+1); D[1] = 1
        R = []; b = false; h = 1
        for i in range(2*n) :
            for k in (1..h) : D[k] += D[k-1]
            if b : R.append(D[h]); h += 1
            b = not b
        return R
    A006013_list(23) # Peter Luschny, May 03 2012
    

Formula

G.f. is square of g.f. for ternary trees, A001764 [Knuth, 2014]. - N. J. A. Sloane, Dec 09 2014
Convolution of A001764 with itself: 2*C(3*n + 2, n)/(3*n + 2), or C(3*n + 2, n+1)/(3*n + 2).
G.f.: (4/(3*x)) * sin((1/3)*arcsin(sqrt(27*x/4)))^2.
G.f.: A(x)/x with A(x)=x/(1-A(x))^2. - Vladimir Kruchinin, Dec 26 2010
From Gary W. Adamson, Jul 14 2011: (Start)
a(n) is the top left term in M^n, where M is the infinite square production matrix:
2, 1, 0, 0, 0, ...
3, 2, 1, 0, 0, ...
4, 3, 2, 1, 0, ...
5, 4, 3, 2, 1, ...
... (End)
From Gary W. Adamson, Aug 11 2011: (Start)
a(n) is the sum of top row terms in Q^n, where Q is the infinite square production matrix as follows:
1, 1, 0, 0, 0, ...
2, 2, 1, 0, 0, ...
3, 3, 2, 1, 0, ...
4, 4, 3, 2, 1, ...
... (End)
D-finite with recurrence: 2*(n+1)*(2n+1)*a(n) = 3*(3n-1)*(3n+1)*a(n-1). - R. J. Mathar, Dec 17 2011
a(n) = 2*A236194(n)/n for n > 0. - Bruno Berselli, Jan 20 2014
a(n) = A258708(2*n+1, n). - Reinhard Zumkeller, Jun 22 2015
From Ilya Gutkovskiy, Dec 29 2016: (Start)
E.g.f.: 2F2([2/3, 4/3]; [3/2,2]; 27*x/4).
a(n) ~ 3^(3*n+3/2)/(sqrt(Pi)*4^(n+1)*n^(3/2)). (End)
a(n) = A110616(n+1, 1). - Ira M. Gessel, Jan 04 2018
0 = v0*(+98415*v2 -122472*v3 +32340*v4) +v1*(+444*v3 -2968*v4) +v2*(-60*v2 +56*v3 +64*v4) where v0=a(n)^2, v1=a(n)*a(n+1), v2=a(n+1)^2, v3=a(n+1)*a(n+2), v4=a(n+2)^2 for all n in Z if a(-1)=-2/3 and a(n)=0 for n<-1. - Michael Somos, May 15 2022
a(n) = (1/4^n) * Product_{1 <= i <= j <= 2*n} (2*i + j + 2)/(2*i + j - 1). Cf. A000260. - Peter Bala, Feb 21 2023
From Karol A. Penson, Jun 02 2023: (Start)
a(n) = Integral_{x=0..27/4} x^n*W(x) dx, where
W(x) = (((9 + sqrt(81 - 12*x))^(2/3) - (9 - sqrt(81 - 12*x))^(2/3)) * 2^(1/3) * 3^(1/6)) / (12 * Pi * x^(1/3)), for x in (0, 27/4).
This integral representation is unique as W(x) is the solution of the Hausdorff power moment problem. Using only the definition of a(n), W(x) can be proven to be positive. W(x) is singular at x = 0, with the singularity x^(-1/3), and for x > 0 is monotonically decreasing to zero at x = 27/4. At x = 27/4 the first derivative of W(x) is infinite. (End)
G.f.: hypergeometric([2/3,1,4/3], [3/2,2], (3^3/2^2)*x). See the e.g.f. above. - Wolfdieter Lang, Feb 04 2024
a(n) = A024485(n+1)/3. - Michael Somos, Oct 14 2024
G.f.: (Sum_{n >= 0} binomial(3*n+2, n)*x^n) / (Sum_{n >= 0} binomial(3*n, n)*x^n) = (B(x) - 1)/(x*B(x)), where B(x) = Sum_{n >= 0} binomial(3*n, n)/(2*n+1) * x^n is the g.f. of A001764. - Peter Bala, Dec 13 2024
The g.f. A(x) is uniquely determined by the conditions A(0) = 1 and [x^n] A(x)^(-n) = -2 for all n >= 1. Cf. A006632. - Peter Bala, Jul 24 2025

Extensions

Edited by N. J. A. Sloane, Feb 21 2008

A006402 Number of sensed 2-connected (nonseparable) planar maps with n edges.

Original entry on oeis.org

1, 2, 3, 6, 16, 42, 151, 596, 2605, 12098, 59166, 297684, 1538590, 8109078, 43476751, 236474942, 1302680941, 7256842362, 40832979283, 231838418310, 1327095781740, 7653155567834, 44434752082990, 259600430870176, 1525366978752096, 9010312253993072, 53485145730576790
Offset: 2

Views

Author

Keywords

Comments

Some people begin this 2,1,2,3,6,..., others begin it 0,1,2,3,6,....
The dual of a nonseparable map is nonseparable, so the class of all nonseparable planar maps is self-dual. The maps considered here are unrooted and sensed and may include loops and parallel edges. - Andrew Howroyd, Mar 29 2021

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. R. S. Walsh, personal communication.

Crossrefs

Row sums of A342061.
Cf. A000087 (with distinguished faces), A000139 (rooted), A005645, A006403 (unsensed), A006406 (without loops or parallel edges).

Programs

  • PARI
    \\ here r(n) is A000139(n-1).
    r(n)={4*binomial(3*n,n)/(3*(3*n-2)*(3*n-1))}
    a(n)={(r(n) + sumdiv(n, d, if(dAndrew Howroyd, Mar 29 2021

Extensions

Terms a(23) and beyond from Andrew Howroyd, Mar 29 2021

A046646 a(n) = 2*binomial(3*n-3, n-1)/(2*n-1) for n >= 2, and a(1) = 1.

Original entry on oeis.org

1, 2, 6, 24, 110, 546, 2856, 15504, 86526, 493350, 2861430, 16829280, 100134216, 601661144, 3645533040, 22249511328, 136657509918, 844061090670, 5239262085330, 32665844580600, 204480219795390, 1284624902435490
Offset: 1

Views

Author

Keywords

Comments

Number of certain rooted planar maps.

Crossrefs

A diagonal of A046651.

Programs

  • Magma
    [1] cat [2*Binomial(3*n-3,n-1)/(2*n-1): n in [2..30]]; // Vincenzo Librandi, Oct 13 2013
  • Maple
    alias(PS=ListTools:-PartialSums): A046646List := proc(m) local A, P, n;
    A := [1,2]; P := [2]; for n from 1 to m - 2 do P := PS(PS([op(P), P[-1]]));
    A := [op(A), P[-1]] od; A end: A046646List(22); # Peter Luschny, Mar 26 2022
  • Mathematica
    Join[{1},Table[(2*Binomial[3n-3,n-1])/(2n-1),{n,2,30}]] (* Harvey P. Dale, Oct 12 2013 *)

Formula

From Emeric Deutsch, Mar 03 2004: (Start)
a(n) = 2*binomial(3*n-3, n-1)/(2*n-1) for n >= 2, and a(1) = 1.
a(n) = 2*A001764(n-1) for n >= 2. (End)
a(n) = (n+1) * A000139(n). - F. Chapoton, Feb 23 2024
G.f.: (1+g)/(1-g) where g*(1-g)^2 = x. - Mark van Hoeij, Nov 10 2011

Extensions

More terms from Emeric Deutsch, Mar 03 2004
New name using a formula of Emeric Deutsch by Peter Luschny, Feb 23 2024

A046651 Triangle of rooted planar maps.

Original entry on oeis.org

1, 1, 2, 1, 6, 6, 1, 12, 26, 24, 1, 20, 75, 120, 110, 1, 30, 174, 416, 594, 546, 1, 42, 350, 1176, 2289, 3094, 2856, 1, 56, 636, 2880, 7322, 12768, 16728, 15504, 1, 72, 1071, 6324, 20475, 44388, 72420, 93024, 86526, 1, 90, 1700, 12740, 51495, 136252, 267240, 417240, 528770, 493350, 1, 110, 2574, 23936, 118734, 378444, 878460, 1610136, 2437149, 3058770, 2861430
Offset: 0

Views

Author

Keywords

Crossrefs

A091599 is the same triangle with rows reversed and has much more information.

Programs

  • Maple
    T := proc(n, k) if k<=n then k*sum((2*j-k)*(j-1)!*(3*n-j-k-1)!/(j-k)!/(j-k)!/(2*k-j)!/(n-j)!, j=k..min(n, 2*k))/(2*n-k)! else 0 fi end: seq(seq(T(n, n-k+1), k=1..n), n=1..11); # Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 19 2008
  • Mathematica
    t[n_, k_] := If[k <= n, k*Sum[(2*j-k)*(j-1)!*(3*n-j-k-1)!/(j-k)!/(j-k)!/(2*k-j)!/(n-j)!, {j, k, Min[n, 2*k]}]/(2*n-k)!, 0]; Table[Table[t[n, n-k+1], {k, 1, n}], {n, 1, 11}] // Flatten (* Jean-François Alcover, Jan 14 2014, after Herman Jamke *)

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 19 2008

A046653 Triangle of rooted planar maps up to orientation-preserving isomorphisms.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 3, 4, 1, 2, 8, 12, 14, 1, 3, 12, 30, 43, 49, 1, 3, 22, 63, 134, 189, 216, 1, 4, 31, 133, 323, 608, 888, 984, 1, 4, 48, 238, 759, 1671, 2988, 4332, 4862, 1, 5, 64, 422, 1594, 4260, 8772, 15126, 22011, 24739, 1, 5, 90, 694, 3210, 10002, 23986, 46923, 79214, 115131, 130338, 1, 6, 115, 1106, 6024, 22176, 60813, 135097, 255277, 424034, 616395, 701584
Offset: 2

Views

Author

Keywords

Examples

			Triangle begins:
  1;
  1,  1;
  1,  1,  2;
  1,  2,  3,  4;
  1,  2,  8, 12, 14;
  1,  3, 12, 30, 43, 49;
  ...
		

Crossrefs

Cf. A046650 (diagonal), A000087 (row sums).

Programs

  • Maple
    # uses function L(.,.) from A046650
    for n from 2 to 13 do
    for m from n to 2 by -1 do
        printf("%d,",L(n,m)) ;
    end do:
    printf("\n") ;
    end do: # R. J. Mathar, Apr 13 2019

Formula

Reference gives generating functions.

Extensions

More terms from R. J. Mathar, Apr 13 2019

A046652 Triangle of rooted planar maps, read by rows.

Original entry on oeis.org

1, 2, 2, 3, 8, 7, 4, 21, 34, 30, 5, 44, 114, 160, 143, 6, 80, 308, 609, 806, 728, 7, 132, 715, 1908, 3315, 4256, 3876, 8, 203, 1482, 5185, 11420, 18444, 23256, 21318, 9, 296, 2814, 12600, 34520, 67856, 104652, 130416, 120175, 10, 414, 4984, 27965, 93924, 221300, 404016, 603801, 746350, 690690, 11, 560, 8343, 57584, 234066, 654336, 1394505, 2418372, 3533145, 4341480, 4032015
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins:
  1;
  2,   2;
  3,   8,   7;
  4,  21,  34,  30;
  5,  44, 114, 160, 143;
  6,  80, 308, 609, 806, 728;
  ...
		

Crossrefs

A091665 is the same triangle with rows reversed and has much more information.

Programs

  • Maple
    T := proc(n, k) if k<=n then k*sum((2*j-k+1)*(j-1)!*(3*n-k-j)!/(j-k+1)!/(j-k)!/(2*k-j-1)!/(n-j)!, j=k..min(n, 2*k-1))/(2*n-k+1)! else 0 fi end: seq(seq(T(n, n-k+1), k=1..n), n=1..11); # Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 30 2008
  • Mathematica
    t[n_, k_] := If[k <= n, k*Sum[(2*j-k+1)*(j-1)!*(3*n-k-j)!/(j-k+1)!/(j-k)!/(2*k-j-1)!/(n-j)!, {j, k, Min[n, 2*k-1]}]/(2*n-k+1)!, 0]; Table[t[n, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jan 20 2014, after Herman Jamke *)

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 30 2008

A000259 Number of certain rooted planar maps.

Original entry on oeis.org

1, 3, 13, 63, 326, 1761, 9808, 55895, 324301, 1908878, 11369744, 68395917, 414927215, 2535523154, 15592255913, 96419104103, 599176447614, 3739845108057, 23435007764606, 147374772979438, 929790132901804, 5883377105975922, 37328490926964481, 237427707464042693
Offset: 1

Views

Author

Keywords

Comments

a(n) is also the number of North-East lattice paths from (0,0) to (2n,n) that begin with a North step, end with an East step, and do not bounce off the line y =1/2 x. Similarly, also the number of paths that begin with an East step, end with a North step, and do not bounce off the line y=1/2 x. - Michael D. Weiner, Aug 03 2017

Examples

			For n = 2 the a(2) = 3 is counting the following three paths EEEENN, EEENEN, ENEEEN. The path EENEEN is excluded as it bounces off the line y = (1/2) x at the point (2, 1). - _Michael D. Weiner_, Aug 03 2017
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A046651.

Programs

  • Magma
    [&+[(-1)^(k-1)*Binomial(3*n, n-k)*k/n*Fibonacci(k - 2):k in [0..n]]: n in [1..30]]; // Vincenzo Librandi, Aug 05 2017
    
  • Maple
    with(linalg): T := proc(n,k) if k<=n then k*add((2*j-k)*(j-1)!*(3*n-j-k-1)!/(j-k)!/(j-k)!/(2*k-j)!/(n-j)!,j=k..min(n,2*k))/(2*n-k)! else 0 fi end: A := matrix(30,30,T): seq(add(A[i,j],j=1..i),i=1..30); # Emeric Deutsch, Mar 03 2004
    R := RootOf(x-t*(t-1)^2, t); ogf := series(1/((1-R-R^2)*(R-1)^2), x=0, 30); # Mark van Hoeij, Nov 08 2011
  • Mathematica
    R = Root[#^3-2#^2+#-x&, 1]; CoefficientList[1/((1-R-R^2)*(R-1)^2) + O[x]^30, x] (* Jean-François Alcover, Feb 06 2016, after Mark van Hoeij *)
    Table[Sum[(-1)^(k - 1)*Binomial[3 n, n - k]*k/n*Fibonacci[k - 2], {k, n}], {n, 21}] (* Michael De Vlieger, Aug 04 2017 *)
  • PARI
    a(n) = sum(k = 1, n, (-1)^(k-1)*binomial(3*n,n-k)*k/n*fibonacci(k-2)); \\ Michel Marcus, Aug 04 2017
    
  • Python
    from sympy import binomial, fibonacci
    def a(n): return sum((-1)**(k - 1)*binomial(3*n, n - k)*k//n*fibonacci(k - 2) for k in range(1, n + 1))
    print([a(n) for n in range(1, 21)]) # Indranil Ghosh, Aug 05 2017

Formula

a(n) = Sum_{k = 1..n} (-1)^(k-1)*C(3n, n-k)*k/n*F(k-2) where F(k) is the k-th Fibonacci number (A000045) and F(-1) = 1. - Michael D. Weiner, Aug 03 2017
a(n) ~ 3^(3*n + 1/2) / (5 * sqrt(Pi) * n^(3/2) * 2^(2*n - 1)). - Vaclav Kotesovec, Jul 06 2024

Extensions

More terms from Emeric Deutsch, Mar 03 2004

A000305 Number of certain rooted planar maps.

Original entry on oeis.org

1, 4, 18, 89, 466, 2537, 14209, 81316, 473338, 2793454, 16674417, 100487896, 610549829, 3735850007, 23000055178, 142370597601, 885521350882, 5531501612071, 34686798239678, 218273864005214, 1377897874711437
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A046652.

Programs

  • Maple
    with(linalg): T := proc(n,k) if k<=n then k*sum((2*j-k+1)*(j-1)!*(3*n-k-j)!/(j-k+1)!/(j-k)!/(2*k-j-1)!/(n-j)!,j=k..min(n,2*k-1))/(2*n-k+1)! else 0 fi end:A := matrix(30,30,T): seq(sum(A[i,j],j=1..i),i=1..30);
    R := RootOf(x-t*(t-1)^2, t); ogf := series((R+1)/((1-R-R^2)*(R-1)^2), x=0, 20); # Mark van Hoeij, Nov 08 2011
  • Mathematica
    t[n_, k_] := If[k <= n, k*Sum[(2*j-k+1)*(j-1)!*(3*n-k-j)!/(j-k+1)!/(j-k)!/ (2*k-j-1)!/(n-j)!, {j, k, Min[n, 2*k-1]}]/(2*n-k+1)!, 0]; a[n_] := Sum[ t[n, k], {k, 1, n}]; Array[a, 21] (* Jean-François Alcover, Feb 07 2016 after Herman Jamke in A046652 *)

Extensions

More terms from Emeric Deutsch, Mar 03 2004

A046647 Number of certain rooted planar maps.

Original entry on oeis.org

1, 6, 26, 120, 594, 3094, 16728, 93024, 528770, 3058770, 17948970, 106585440, 639318456, 3867821640, 23574446992, 144621823632, 892293152994, 5533289372170, 34468829508750, 215594574231960, 1353464311979010
Offset: 2

Views

Author

Keywords

Crossrefs

A diagonal of A046651. Cf. A046646.

Formula

a(2)=1; a(n) = 4*(7*n-15)*(3*n-6)!/((n-2)!*(2n-2)!). - Emeric Deutsch, Mar 03 2004
G.f.: (g+1)*(3*g+1)/(g-1)^2 where g*(1-g)^2 = x. - Mark van Hoeij, Nov 10 2011

Extensions

More terms from Emeric Deutsch, Mar 03 2004

A046650 Number of sensed nonseparable (2-connected) planar maps with n edges and a distinguished face of size 2.

Original entry on oeis.org

1, 1, 2, 4, 14, 49, 216, 984, 4862, 24739, 130338, 701584, 3852744, 21489836, 121525520, 695307888, 4019381790, 23446201495, 137875564710, 816646459860, 4868578092510, 29196022525905, 176022392938080, 1066433501134560, 6490009570139784, 39659537885087124, 243278423033093336, 1497584057249141728, 9249144367260811824
Offset: 2

Views

Author

Keywords

Comments

From R. J. Mathar, Apr 13 2019: (Start)
Table III with row sums A000087 is (A046653 row-reversed):
1;
1, 1;
2, 1, 1;
4, 3, 2, 1;
14, 12, 8, 2, 1;
49, 43, 30, 12, 3, 1;
216, 189, 134, 63, 22, 3, 1;
984, 888, 608, 323, 133, 31, 4, 1;
4862, 4332, 2988, 1671, 759, 238, 48, 4, 1;
...
(End)
Equivalently, by duality, a(n) is the number of sensed nonseparable planar maps with n edges and a distinguished vertex of degree 2. - Andrew Howroyd, Jan 19 2025

Crossrefs

Main diagonal of A046653.
Cf. A000087 (distinguished face of any size).

Programs

  • Maple
    B1nm := proc(n,m) # eq (4.15)
        local j ;
        if m>=2 and n>= m  then
            add((3*m-2*j-1)*(2*j-m)*(j-2)!*(3*n-j-m-1)!/(n-j)!/(j-m)!/(j-m+1)!/(2*m-j)!,j=m..min(n,2*m) ) ;
            %*m/(2*n-m)! ;
        else
            0 ;
        end if;
    end proc:
    B2wj := proc(w,j) # eq (8.21)
        local k ;
        if  w >= j and j>=1 and w >= 1 then
            add((2*k-j+1)*(k-1)!*(3*w-k-j)!/(k-j+1)!/(k-j)!/(2*j-k-1)!/(w-k)!,k=j..min(w,2*j-1) ) ;
            %*j/(2*w-j+1)! ;
        else
            0;
        end if;
    end proc:
    Brwj := proc(r,w,j) # eq. (8.21)
        local k ;
        if  w >= j and j>=1 and w>=1 and r > 1 then
            add((2*k-j)*(k-1)!*(3*w-k-j-1)!/((k-j)!)^2/(2*j-k)!/(w-k)!,k=j..min(w,2*j) ) ;
            %*j/(2*w-j)! ;
        else
            0 ;
        end if;
    end proc:
    Brnm := proc(r,n,m)
        if r = 1 then
            B1nm(n,m) ;
        elif r = 2 and type(n,'odd') and type (m,'even') then
            B2wj((n-1)/2,m/2) ;
        elif modp(n,r) <> 0 or modp(m,r) <> 0 then
            0;
        else
            Brwj(r,n/r,m/r) ;
        end if;
    end proc:
    L := proc(n,m) # eq. (6.7)
        add(numtheory[phi](s)*Brnm(s,n,m),s=numtheory[divisors](m)) ;
        %/m ;
    end proc:
    seq(L(n,2),n=2..40) ; # R. J. Mathar, Apr 13 2019
  • Mathematica
    B1nm[n_, m_] := If[m >= 2 && n >= m, Sum[(3m - 2j - 1)(2j - m)(j - 2)! (3n - j - m - 1)!/(n - j)!/(j - m)!/(j - m + 1)!/(2m - j)!, {j, m, Min[n, 2m] }] m/(2n - m)!, 0];
    B2wj[w_, j_]  := If[w >= j && j >= 1 && w >= 1, Sum[(2k - j + 1)(k - 1)! (3 w - k - j)!/(k - j + 1)!/(k - j)!/(2j - k - 1)!/(w - k)!, {k, j, Min[w, 2 j - 1] }] j/(2w - j + 1)!, 0];
    Brwj[r_, w_, j_] := If[w >= j && j >= 1 && w >= 1 && r > 1 , Sum[(2k - j)(k - 1)! (3w - k - j - 1)!/((k - j)!)^2/(2j - k)!/(w - k)!, {k, j, Min[w, 2j]}] j/(2w - j)!, 0];
    Brnm[r_, n_, m_] := Which[r == 1, B1nm[n, m], r == 2 && OddQ[n] && EvenQ[m], B2wj[(n - 1)/2, m/2], Mod[n, r] != 0 || Mod[m, r] != 0, 0, True, Brwj[r, n/r, m/r]];
    L[n_, m_] := Sum[EulerPhi[s] Brnm[s, n, m], {s, Divisors[m]}]/m;
    Table[L[n, 2], {n, 2, 30}] // Flatten (* Jean-François Alcover, Apr 05 2020, after R. J. Mathar *)
  • PARI
    a(n) = n-=2; if(n<=0, n==0, (n*binomial(3*n\2, n\2) + binomial(3*n, 2*n+1))/(n*(n+1)) ) \\ Andrew Howroyd, Jan 19 2025

Formula

Reference gives generating functions.
a(n+2) = binomial(floor(3*n/2), floor(n/2))/(n+1) + binomial(3*n, 2*n+1)/(n*(n+1)) for n > 0. - Andrew Howroyd, Jan 19 2025

Extensions

More terms from R. J. Mathar, Apr 13 2019
Name clarified by Andrew Howroyd, Jan 19 2025
Showing 1-10 of 10 results.