cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A046646 a(n) = 2*binomial(3*n-3, n-1)/(2*n-1) for n >= 2, and a(1) = 1.

Original entry on oeis.org

1, 2, 6, 24, 110, 546, 2856, 15504, 86526, 493350, 2861430, 16829280, 100134216, 601661144, 3645533040, 22249511328, 136657509918, 844061090670, 5239262085330, 32665844580600, 204480219795390, 1284624902435490
Offset: 1

Views

Author

Keywords

Comments

Number of certain rooted planar maps.

Crossrefs

A diagonal of A046651.

Programs

  • Magma
    [1] cat [2*Binomial(3*n-3,n-1)/(2*n-1): n in [2..30]]; // Vincenzo Librandi, Oct 13 2013
  • Maple
    alias(PS=ListTools:-PartialSums): A046646List := proc(m) local A, P, n;
    A := [1,2]; P := [2]; for n from 1 to m - 2 do P := PS(PS([op(P), P[-1]]));
    A := [op(A), P[-1]] od; A end: A046646List(22); # Peter Luschny, Mar 26 2022
  • Mathematica
    Join[{1},Table[(2*Binomial[3n-3,n-1])/(2n-1),{n,2,30}]] (* Harvey P. Dale, Oct 12 2013 *)

Formula

From Emeric Deutsch, Mar 03 2004: (Start)
a(n) = 2*binomial(3*n-3, n-1)/(2*n-1) for n >= 2, and a(1) = 1.
a(n) = 2*A001764(n-1) for n >= 2. (End)
a(n) = (n+1) * A000139(n). - F. Chapoton, Feb 23 2024
G.f.: (1+g)/(1-g) where g*(1-g)^2 = x. - Mark van Hoeij, Nov 10 2011

Extensions

More terms from Emeric Deutsch, Mar 03 2004
New name using a formula of Emeric Deutsch by Peter Luschny, Feb 23 2024

A091599 Triangle read by rows: T(n,k) is the number of nonseparable planar maps with r*n edges and a fixed outer face of r*k edges which are invariant under a rotation of 1/r for any r >= 2 (independent of actual value of r).

Original entry on oeis.org

1, 2, 1, 6, 6, 1, 24, 26, 12, 1, 110, 120, 75, 20, 1, 546, 594, 416, 174, 30, 1, 2856, 3094, 2289, 1176, 350, 42, 1, 15504, 16728, 12768, 7322, 2880, 636, 56, 1, 86526, 93024, 72420, 44388, 20475, 6324, 1071, 72, 1, 493350, 528770, 417240, 267240, 136252, 51495, 12740, 1700, 90, 1
Offset: 1

Views

Author

Emeric Deutsch, Mar 03 2004

Keywords

Comments

Table I in the Brown reference.

Examples

			Triangle starts:
    1;
    2,   1;
    6,   6,  1;
   24,  26, 12,  1;
  110, 120, 75, 20, 1;
  ...
		

Crossrefs

Column 1 gives A046646, column 2 gives A046647, row sums give A000259.
Same as A046651 but with rows reversed.

Programs

  • Maple
    T := proc(n,k) if k<=n then k*sum((2*j-k)*(j-1)!*(3*n-j-k-1)!/(j-k)!/(j-k)!/(2*k-j)!/(n-j)!,j=k..min(n,2*k))/(2*n-k)! else 0 fi end: seq(seq(T(n,k), k=1..n),n=1..11);
  • PARI
    T(n, k) = k*sum(j=k, min(n, 2*k), (2*j-k)*(j-1)!*(3*n-j-k-1)!/(((j-k)!)^2*(2*k-j)!*(n-j)!))/(2*n-k)!
    for(n=1, 10, for(k=1, n, print1(T(n,k), ", ")); print) \\ Andrew Howroyd, Mar 29 2021

Formula

T(n, k) = k*(Sum_{j=k..min(n, 2*k)} (2*j-k)*(j-1)!*(3*n-j-k-1)!/(((j-k)!)^2*(2*k-j)!*(n-j)!))/(2*n-k)!

Extensions

Name clarified by Andrew Howroyd, Mar 29 2021
Showing 1-2 of 2 results.