cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A000087 Number of unrooted nonseparable planar maps with n edges and a distinguished face.

Original entry on oeis.org

2, 1, 2, 4, 10, 37, 138, 628, 2972, 14903, 76994, 409594, 2222628, 12281570, 68864086, 391120036, 2246122574, 13025721601, 76194378042, 449155863868, 2666126033850, 15925105028685, 95664343622234, 577651490729530
Offset: 1

Views

Author

Keywords

Comments

The number of unrooted non-separable n-edge maps in the plane (planar with a distinguished outside face). - Valery A. Liskovets, Mar 17 2005

References

  • V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A046653.

Programs

  • Mathematica
    q[n_] := If[EvenQ[n], 0, 2(n+1)Binomial[3(n+1)/2, (n+1)/2]/(3(3n-1)(3n+1)) ]; a[n_] := (1/(3n))((n+2)Binomial[3n, n]/((3n-2)(3n-1)) + Sum[EulerPhi[ n/k] Binomial[3k, k], {k, Divisors[n] // Most}]) + q[n]; Array[a, 30] (* Jean-François Alcover, Feb 04 2016, after Valery A. Liskovets *)
  • PARI
    q(n) = if(n%2, 2*(n + 1)*binomial(3*(n + 1)/2, (n + 1)/2) / (3*(3*n - 1)*(3*n + 1)), 0);
    a(n) = (1/(3*n)) * ((n + 2) * binomial(3*n, n)/((3*n - 2) * (3*n - 1)) + sum(k=1, n - 1, if(Mod(n, k)==0, eulerphi(n/k) * binomial(3*k, k)))) + q(n); \\ Indranil Ghosh, Apr 04 2017

Formula

a(n) = (1/3n)[(n+2)binomial(3n, n)/((3n-2)(3n-1)) + Sum_{0A000010, q(n)=0 if n is even and q(n)=2(n+1)binomial(3(n+1)/2, (n+1)/2)/(3(3n-1)(3n+1)) if n is odd. - Valery A. Liskovets, Mar 17 2005
a(n) ~ 3/(8 * sqrt(3*Pi))*(27/4)^n / n^(5/2). - Cedric Lorand, Apr 18 2022

Extensions

More terms from T. D. Noe, Mar 14 2007
Name corrected by Cyril Banderier, Apr 04 2017
Name clarified by Andrew Howroyd, Mar 29 2021

A091665 Triangle read by rows: T(n,k) is the number of nonseparable planar maps with 2*n+1 edges and a fixed outer face of 2*k edges which are invariant under a rotation of a 1/2 turn.

Original entry on oeis.org

1, 2, 2, 7, 8, 3, 30, 34, 21, 4, 143, 160, 114, 44, 5, 728, 806, 609, 308, 80, 6, 3876, 4256, 3315, 1908, 715, 132, 7, 21318, 23256, 18444, 11420, 5185, 1482, 203, 8, 120175, 130416, 104652, 67856, 34520, 12600, 2814, 296, 9, 690690, 746350, 603801, 404016, 221300, 93924, 27965, 4984, 414, 10
Offset: 1

Views

Author

Emeric Deutsch, Mar 03 2004

Keywords

Comments

Table II in the Brown reference.

Examples

			Triangle begins:
    1;
    2,   2;
    7,   8,   3;
   30,  34,  21,  4;
  143, 160, 114, 44, 5;
  ...
The T(n,n) = n solutions correspond to a regular polygon with 2n vertices and a single diagonal joining two diametrically opposite vertices. - _Andrew Howroyd_, Mar 29 2021
		

Crossrefs

Column 1 gives A006013, column 2 gives A046649, row sums give A000305.
Same as A046652 but with rows reversed.

Programs

  • Maple
    T := proc(n,k) if k<=n then k*sum((2*j-k+1)*(j-1)!*(3*n-k-j)!/(j-k+1)!/(j-k)!/(2*k-j-1)!/(n-j)!,j=k..min(n,2*k-1))/(2*n-k+1)! else 0 fi end: seq(seq(T(n,k),k=1..n),n=1..11);
  • Mathematica
    t[n_, k_] := If[k <= n, k*Sum[(2*j-k+1)*(j-1)!*(3*n-k-j)!/(j-k+1)!/(j-k)!/(2*k-j-1)!/(n-j)!, {j, k, Min[n, 2*k-1]}]/(2*n-k+1)!, 0]; Table[t[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 20 2014, after Maple *)
  • PARI
    T(n,k) = {k*sum(j=k, min(n, 2*k-1), (2*j-k+1)*(j-1)!*(3*n-k-j)!/((j-k+1)!*(j-k)!*(2*k-j-1)!*(n-j)!))/(2*n-k+1)!}
    for(n=1, 10, for(k=1, n, print1(T(n,k), ", ")); print) \\ Andrew Howroyd, Mar 29 2021

Formula

T(n, k) = k*(Sum_{j=k..min(n, 2*k-1)} (2*j-k+1)*(j-1)!*(3*n-k-j)!/((j-k+1)!*(j-k)!*(2*k-j-1)!*(n-j)!))/(2*n-k+1)! for k<=n and T(n, k)=0 for k>n.

Extensions

Name clarified by Andrew Howroyd, Mar 29 2021

A091599 Triangle read by rows: T(n,k) is the number of nonseparable planar maps with r*n edges and a fixed outer face of r*k edges which are invariant under a rotation of 1/r for any r >= 2 (independent of actual value of r).

Original entry on oeis.org

1, 2, 1, 6, 6, 1, 24, 26, 12, 1, 110, 120, 75, 20, 1, 546, 594, 416, 174, 30, 1, 2856, 3094, 2289, 1176, 350, 42, 1, 15504, 16728, 12768, 7322, 2880, 636, 56, 1, 86526, 93024, 72420, 44388, 20475, 6324, 1071, 72, 1, 493350, 528770, 417240, 267240, 136252, 51495, 12740, 1700, 90, 1
Offset: 1

Views

Author

Emeric Deutsch, Mar 03 2004

Keywords

Comments

Table I in the Brown reference.

Examples

			Triangle starts:
    1;
    2,   1;
    6,   6,  1;
   24,  26, 12,  1;
  110, 120, 75, 20, 1;
  ...
		

Crossrefs

Column 1 gives A046646, column 2 gives A046647, row sums give A000259.
Same as A046651 but with rows reversed.

Programs

  • Maple
    T := proc(n,k) if k<=n then k*sum((2*j-k)*(j-1)!*(3*n-j-k-1)!/(j-k)!/(j-k)!/(2*k-j)!/(n-j)!,j=k..min(n,2*k))/(2*n-k)! else 0 fi end: seq(seq(T(n,k), k=1..n),n=1..11);
  • PARI
    T(n, k) = k*sum(j=k, min(n, 2*k), (2*j-k)*(j-1)!*(3*n-j-k-1)!/(((j-k)!)^2*(2*k-j)!*(n-j)!))/(2*n-k)!
    for(n=1, 10, for(k=1, n, print1(T(n,k), ", ")); print) \\ Andrew Howroyd, Mar 29 2021

Formula

T(n, k) = k*(Sum_{j=k..min(n, 2*k)} (2*j-k)*(j-1)!*(3*n-j-k-1)!/(((j-k)!)^2*(2*k-j)!*(n-j)!))/(2*n-k)!

Extensions

Name clarified by Andrew Howroyd, Mar 29 2021

A046650 Number of sensed nonseparable (2-connected) planar maps with n edges and a distinguished face of size 2.

Original entry on oeis.org

1, 1, 2, 4, 14, 49, 216, 984, 4862, 24739, 130338, 701584, 3852744, 21489836, 121525520, 695307888, 4019381790, 23446201495, 137875564710, 816646459860, 4868578092510, 29196022525905, 176022392938080, 1066433501134560, 6490009570139784, 39659537885087124, 243278423033093336, 1497584057249141728, 9249144367260811824
Offset: 2

Views

Author

Keywords

Comments

From R. J. Mathar, Apr 13 2019: (Start)
Table III with row sums A000087 is (A046653 row-reversed):
1;
1, 1;
2, 1, 1;
4, 3, 2, 1;
14, 12, 8, 2, 1;
49, 43, 30, 12, 3, 1;
216, 189, 134, 63, 22, 3, 1;
984, 888, 608, 323, 133, 31, 4, 1;
4862, 4332, 2988, 1671, 759, 238, 48, 4, 1;
...
(End)
Equivalently, by duality, a(n) is the number of sensed nonseparable planar maps with n edges and a distinguished vertex of degree 2. - Andrew Howroyd, Jan 19 2025

Crossrefs

Main diagonal of A046653.
Cf. A000087 (distinguished face of any size).

Programs

  • Maple
    B1nm := proc(n,m) # eq (4.15)
        local j ;
        if m>=2 and n>= m  then
            add((3*m-2*j-1)*(2*j-m)*(j-2)!*(3*n-j-m-1)!/(n-j)!/(j-m)!/(j-m+1)!/(2*m-j)!,j=m..min(n,2*m) ) ;
            %*m/(2*n-m)! ;
        else
            0 ;
        end if;
    end proc:
    B2wj := proc(w,j) # eq (8.21)
        local k ;
        if  w >= j and j>=1 and w >= 1 then
            add((2*k-j+1)*(k-1)!*(3*w-k-j)!/(k-j+1)!/(k-j)!/(2*j-k-1)!/(w-k)!,k=j..min(w,2*j-1) ) ;
            %*j/(2*w-j+1)! ;
        else
            0;
        end if;
    end proc:
    Brwj := proc(r,w,j) # eq. (8.21)
        local k ;
        if  w >= j and j>=1 and w>=1 and r > 1 then
            add((2*k-j)*(k-1)!*(3*w-k-j-1)!/((k-j)!)^2/(2*j-k)!/(w-k)!,k=j..min(w,2*j) ) ;
            %*j/(2*w-j)! ;
        else
            0 ;
        end if;
    end proc:
    Brnm := proc(r,n,m)
        if r = 1 then
            B1nm(n,m) ;
        elif r = 2 and type(n,'odd') and type (m,'even') then
            B2wj((n-1)/2,m/2) ;
        elif modp(n,r) <> 0 or modp(m,r) <> 0 then
            0;
        else
            Brwj(r,n/r,m/r) ;
        end if;
    end proc:
    L := proc(n,m) # eq. (6.7)
        add(numtheory[phi](s)*Brnm(s,n,m),s=numtheory[divisors](m)) ;
        %/m ;
    end proc:
    seq(L(n,2),n=2..40) ; # R. J. Mathar, Apr 13 2019
  • Mathematica
    B1nm[n_, m_] := If[m >= 2 && n >= m, Sum[(3m - 2j - 1)(2j - m)(j - 2)! (3n - j - m - 1)!/(n - j)!/(j - m)!/(j - m + 1)!/(2m - j)!, {j, m, Min[n, 2m] }] m/(2n - m)!, 0];
    B2wj[w_, j_]  := If[w >= j && j >= 1 && w >= 1, Sum[(2k - j + 1)(k - 1)! (3 w - k - j)!/(k - j + 1)!/(k - j)!/(2j - k - 1)!/(w - k)!, {k, j, Min[w, 2 j - 1] }] j/(2w - j + 1)!, 0];
    Brwj[r_, w_, j_] := If[w >= j && j >= 1 && w >= 1 && r > 1 , Sum[(2k - j)(k - 1)! (3w - k - j - 1)!/((k - j)!)^2/(2j - k)!/(w - k)!, {k, j, Min[w, 2j]}] j/(2w - j)!, 0];
    Brnm[r_, n_, m_] := Which[r == 1, B1nm[n, m], r == 2 && OddQ[n] && EvenQ[m], B2wj[(n - 1)/2, m/2], Mod[n, r] != 0 || Mod[m, r] != 0, 0, True, Brwj[r, n/r, m/r]];
    L[n_, m_] := Sum[EulerPhi[s] Brnm[s, n, m], {s, Divisors[m]}]/m;
    Table[L[n, 2], {n, 2, 30}] // Flatten (* Jean-François Alcover, Apr 05 2020, after R. J. Mathar *)
  • PARI
    a(n) = n-=2; if(n<=0, n==0, (n*binomial(3*n\2, n\2) + binomial(3*n, 2*n+1))/(n*(n+1)) ) \\ Andrew Howroyd, Jan 19 2025

Formula

Reference gives generating functions.
a(n+2) = binomial(floor(3*n/2), floor(n/2))/(n+1) + binomial(3*n, 2*n+1)/(n*(n+1)) for n > 0. - Andrew Howroyd, Jan 19 2025

Extensions

More terms from R. J. Mathar, Apr 13 2019
Name clarified by Andrew Howroyd, Jan 19 2025
Showing 1-4 of 4 results.