cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A046649 a(n) is the number of nonseparable planar maps with 2*n+1 edges and a fixed outer face of 4 edges which are invariant under a rotation of a 1/2 turn. (Column 2 of A091665.)

Original entry on oeis.org

2, 8, 34, 160, 806, 4256, 23256, 130416, 746350, 4341480, 25594530, 152585472, 918324904, 5572034240, 34048494608, 209347674768, 1294227005694, 8040125464280, 50165404177350, 314229490307040, 1975283452131990, 12456968750889600, 78790615438385760, 499700263517332800
Offset: 2

Views

Author

Keywords

Crossrefs

Column 2 of A091665.

Formula

a(n) = 4*(7*n-11)*(3*n-5)!/((n-2)!*(2*n-1)!). - Emeric Deutsch, Mar 03 2004
G.f.: 2*(g+1)/(1-g)^3 where g*(1-g)^2 = x. - Mark van Hoeij, Nov 10 2011

Extensions

More terms from Emeric Deutsch, Mar 03 2004
Terms a(23) and beyond from Andrew Howroyd, Mar 29 2021

A046652 Triangle of rooted planar maps, read by rows.

Original entry on oeis.org

1, 2, 2, 3, 8, 7, 4, 21, 34, 30, 5, 44, 114, 160, 143, 6, 80, 308, 609, 806, 728, 7, 132, 715, 1908, 3315, 4256, 3876, 8, 203, 1482, 5185, 11420, 18444, 23256, 21318, 9, 296, 2814, 12600, 34520, 67856, 104652, 130416, 120175, 10, 414, 4984, 27965, 93924, 221300, 404016, 603801, 746350, 690690, 11, 560, 8343, 57584, 234066, 654336, 1394505, 2418372, 3533145, 4341480, 4032015
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins:
  1;
  2,   2;
  3,   8,   7;
  4,  21,  34,  30;
  5,  44, 114, 160, 143;
  6,  80, 308, 609, 806, 728;
  ...
		

Crossrefs

A091665 is the same triangle with rows reversed and has much more information.

Programs

  • Maple
    T := proc(n, k) if k<=n then k*sum((2*j-k+1)*(j-1)!*(3*n-k-j)!/(j-k+1)!/(j-k)!/(2*k-j-1)!/(n-j)!, j=k..min(n, 2*k-1))/(2*n-k+1)! else 0 fi end: seq(seq(T(n, n-k+1), k=1..n), n=1..11); # Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 30 2008
  • Mathematica
    t[n_, k_] := If[k <= n, k*Sum[(2*j-k+1)*(j-1)!*(3*n-k-j)!/(j-k+1)!/(j-k)!/(2*k-j-1)!/(n-j)!, {j, k, Min[n, 2*k-1]}]/(2*n-k+1)!, 0]; Table[t[n, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jan 20 2014, after Herman Jamke *)

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 30 2008

A091599 Triangle read by rows: T(n,k) is the number of nonseparable planar maps with r*n edges and a fixed outer face of r*k edges which are invariant under a rotation of 1/r for any r >= 2 (independent of actual value of r).

Original entry on oeis.org

1, 2, 1, 6, 6, 1, 24, 26, 12, 1, 110, 120, 75, 20, 1, 546, 594, 416, 174, 30, 1, 2856, 3094, 2289, 1176, 350, 42, 1, 15504, 16728, 12768, 7322, 2880, 636, 56, 1, 86526, 93024, 72420, 44388, 20475, 6324, 1071, 72, 1, 493350, 528770, 417240, 267240, 136252, 51495, 12740, 1700, 90, 1
Offset: 1

Views

Author

Emeric Deutsch, Mar 03 2004

Keywords

Comments

Table I in the Brown reference.

Examples

			Triangle starts:
    1;
    2,   1;
    6,   6,  1;
   24,  26, 12,  1;
  110, 120, 75, 20, 1;
  ...
		

Crossrefs

Column 1 gives A046646, column 2 gives A046647, row sums give A000259.
Same as A046651 but with rows reversed.

Programs

  • Maple
    T := proc(n,k) if k<=n then k*sum((2*j-k)*(j-1)!*(3*n-j-k-1)!/(j-k)!/(j-k)!/(2*k-j)!/(n-j)!,j=k..min(n,2*k))/(2*n-k)! else 0 fi end: seq(seq(T(n,k), k=1..n),n=1..11);
  • PARI
    T(n, k) = k*sum(j=k, min(n, 2*k), (2*j-k)*(j-1)!*(3*n-j-k-1)!/(((j-k)!)^2*(2*k-j)!*(n-j)!))/(2*n-k)!
    for(n=1, 10, for(k=1, n, print1(T(n,k), ", ")); print) \\ Andrew Howroyd, Mar 29 2021

Formula

T(n, k) = k*(Sum_{j=k..min(n, 2*k)} (2*j-k)*(j-1)!*(3*n-j-k-1)!/(((j-k)!)^2*(2*k-j)!*(n-j)!))/(2*n-k)!

Extensions

Name clarified by Andrew Howroyd, Mar 29 2021
Showing 1-3 of 3 results.