cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A006402 Number of sensed 2-connected (nonseparable) planar maps with n edges.

Original entry on oeis.org

1, 2, 3, 6, 16, 42, 151, 596, 2605, 12098, 59166, 297684, 1538590, 8109078, 43476751, 236474942, 1302680941, 7256842362, 40832979283, 231838418310, 1327095781740, 7653155567834, 44434752082990, 259600430870176, 1525366978752096, 9010312253993072, 53485145730576790
Offset: 2

Views

Author

Keywords

Comments

Some people begin this 2,1,2,3,6,..., others begin it 0,1,2,3,6,....
The dual of a nonseparable map is nonseparable, so the class of all nonseparable planar maps is self-dual. The maps considered here are unrooted and sensed and may include loops and parallel edges. - Andrew Howroyd, Mar 29 2021

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. R. S. Walsh, personal communication.

Crossrefs

Row sums of A342061.
Cf. A000087 (with distinguished faces), A000139 (rooted), A005645, A006403 (unsensed), A006406 (without loops or parallel edges).

Programs

  • PARI
    \\ here r(n) is A000139(n-1).
    r(n)={4*binomial(3*n,n)/(3*(3*n-2)*(3*n-1))}
    a(n)={(r(n) + sumdiv(n, d, if(dAndrew Howroyd, Mar 29 2021

Extensions

Terms a(23) and beyond from Andrew Howroyd, Mar 29 2021

A379430 Array read by antidiagonals: A(n,k) is the number of sensed planar maps with n vertices and k faces, n >= 1, k >= 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 5, 5, 2, 3, 14, 23, 14, 3, 6, 42, 108, 108, 42, 6, 14, 140, 501, 761, 501, 140, 14, 34, 473, 2264, 4744, 4744, 2264, 473, 34, 95, 1670, 10087, 27768, 38495, 27768, 10087, 1670, 95, 280, 5969, 44310, 153668, 279698, 279698, 153668, 44310, 5969, 280
Offset: 1

Views

Author

Andrew Howroyd, Jan 13 2025

Keywords

Comments

The planar maps considered are connected and may contain loops and parallel edges.
The number of edges is n + k - 2.

Examples

			Array begins:
=========================================================
n\k |  1    2     3      4      5      6      7     8 ...
----+----------------------------------------------------
  1 |  1    1     1      2      3      6     14    34 ...
  2 |  1    2     5     14     42    140    473  1670 ...
  3 |  1    5    23    108    501   2264  10087 44310 ...
  4 |  2   14   108    761   4744  27768 153668 ...
  5 |  3   42   501   4744  38495 279698 ...
  6 |  6  140  2264  27768 279698 ...
  7 | 14  473 10087 153668 ...
  8 | 34 1670 44310 ...
   ...
As a triangle, rows give the number of edges (first row is 0 edges):
   1;
   1,    1;
   1,    2,     1;
   2,    5,     5,     2;
   3,   14,    23,    14,     3;
   6,   42,   108,   108,    42,     6;
  14,  140,   501,   761,   501,   140,    14;
  34,  473,  2264,  4744,  4744,  2264,   473,   34;
  95, 1670, 10087, 27768, 38495, 27768, 10087, 1670, 95;
  ...
		

Crossrefs

Antidiagonal sums are A006384.
Columns 1..2 are A002995, A380237.
Cf. A269920 (rooted), A277741 (unsensed), A379431 (achiral), A342061 (2-connected), A384964 (simple).

Formula

A(n,k) = A(k,n).

A379432 Triangle read by rows: T(n,k) is the number of unsensed 2-connected (nonseparable) planar maps with n edges and k vertices, n >= 2, 2 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 7, 3, 1, 1, 4, 13, 13, 4, 1, 1, 5, 29, 44, 29, 5, 1, 1, 7, 51, 139, 139, 51, 7, 1, 1, 8, 92, 370, 623, 370, 92, 8, 1, 1, 10, 147, 913, 2307, 2307, 913, 147, 10, 1, 1, 12, 240, 2048, 7644, 11673, 7644, 2048, 240, 12, 1, 1, 14, 357, 4295, 22344, 50174, 50174, 22344, 4295, 357, 14, 1
Offset: 2

Views

Author

Andrew Howroyd, Jan 14 2025

Keywords

Comments

The maps considered here may include parallel edges.
The number of faces is n + 2 - k.

Examples

			Triangle begins:
   1;
   1,  1;
   1,  1,   1;
   1,  2,   2,   1;
   1,  3,   7,   3,    1;
   1,  4,  13,  13,    4,    1;
   1,  5,  29,  44,   29,    5,   1;
   1,  7,  51, 139,  139,   51,   7,   1;
   1,  8,  92, 370,  623,  370,  92,   8,  1;
   1, 10, 147, 913, 2307, 2307, 913, 147, 10, 1;
   ...
		

Crossrefs

Row sums are A006403.
Cf. A082680 (rooted), A342061 (sensed), A212438 (3-connected), A277741, A342060.

Formula

T(n,k) = T(n, n+2-k).
Showing 1-3 of 3 results.