cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A000257 Number of rooted bicubic maps: a(n) = (8*n-4)*a(n-1)/(n+2) for n >= 2, a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 3, 12, 56, 288, 1584, 9152, 54912, 339456, 2149888, 13891584, 91287552, 608583680, 4107939840, 28030648320, 193100021760, 1341536993280, 9390758952960, 66182491668480, 469294031831040, 3346270487838720, 23981605162844160, 172667557172477952
Offset: 0

Views

Author

Keywords

Comments

Number of rooted Eulerian planar maps with n edges. - Valery A. Liskovets, Apr 07 2002
Number of indecomposable 1342-avoiding permutations of length n.
Also counts rooted planar 2-constellations with n digons. - Valery A. Liskovets, Dec 01 2003
a(n) is also the number of rooted planar hypermaps with n darts (darts are semi-edges in the particular case of ordinary maps). - Valery A. Liskovets, Apr 13 2006
Number of "new" intervals in Tamari lattices of size n (see Chapoton paper). - Ralf Stephan, May 08 2007

Examples

			G.f. = 1 + x + 3*x^2 + 12*x^3 + 56*x^4 + 288*x^5 + 1584*x^6 + 9152*x^7 + ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 321.
  • L. M. Koganov, V. A. Liskovets, T. R. S. Walsh, Total vertex enumeration in rooted planar maps, Ars Combin., Vol. 54 (2000), pp. 149-160.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A069726, A007054, A298358 (rooted).
First row of array A101477.

Programs

  • Magma
    [1] cat [3*2^n*Factorial(2*n)/((2*n^2+6*n+4)*Factorial(n)^2): n in [1.. 25]]; // Vincenzo Librandi, Oct 21 2014
    
  • Maple
    A000257 := proc(n)
            option remember;
            if n <=1 then
                    1;
            else
                    4*(2*n-1)*procname(n-1)/(n+2) ;
            end if ;
    end proc: # R. J. Mathar, Dec 18 2011
  • Mathematica
    CoefficientList[Series[1 + x HypergeometricPFQ[{1, 3/2}, {4}, 8 x], {x, 0, 10}], x]
    (* Second program: *)
    Join[{1}, Table[3*2^(n-1) CatalanNumber[n]/(n+2), {n, 30}]] (* Harvey P. Dale, Dec 18 2011 *)
  • PARI
    C(n)=binomial(2*n, n)/(n+1);
    a(n)=if(n==0, 1, 3*2^(n-1)*C(n)/(n+2) ); \\ Joerg Arndt, May 04 2013
    
  • PARI
    x='x+O('x^66); Vec( ((1-8*x)^(3/2) + 8*x^2 + 12*x - 1)/(32*x^2) ) \\ Joerg Arndt, May 04 2013
    
  • PARI
    x='x; y='y; Fxy = 16*x^2*y^2 - (8*x^2+12*x-1)*y + x^2+11*x-1;
    seq(N) = {
      my(y0 = 1 + O('x^N), y1=0);
      for (k = 1, N,
        y1 = y0 - subst(Fxy, y, y0)/subst(deriv(Fxy, y), y, y0);
        if (y1 == y0, break()); y0 = y1);
      Vec(y0);
    };
    seq(24) \\ Gheorghe Coserea, Nov 30 2016
    
  • Python
    a000257 = [1]
    for n in range(1, 25): a000257.append((8*n-4)*a000257[-1]//(n+2))
    print(a000257) # Gennady Eremin, Mar 22 2022

Formula

a(0) = 1 and a(n) = 3*2^(n-1)*C(n)/(n+2) for n >= 1, where C = Catalan (A000108).
a(n) = 2^(n-2) * A007054(n), n > 1.
O.g.f.: 1/4 + (1/8) * ( -(1-8*x)^(1/2) + 16*(1-8*x)^(1/2)*x+1-8*x ) / ((1-8*x)^(1/2)*x*(1+(1-8*x)^(1/2))). - Karol A. Penson, Jun 04 2004
E.g.f.: (1/8) * exp(4*x)*(8*BesselI(0, 4*x)*x-BesselI(1, 4*x)-8*BesselI(1, 4*x)*x)/x. - Karol A. Penson, Jun 04 2004
O.g.f.: 1 + x*2F1( (1, 3/2); (4); 8*x). - Olivier Gérard, Feb 15 2011
D-finite with recurrence (n + 2) * a(n) = (8*n - 4) * a(n - 1). - Simon Plouffe, Feb 09 2012
O.g.f.: ((1-8*x)^(3/2) + 8*x^2 + 12*x - 1)/(32*x^2) = 1 + x + 3*x^2 + 12*x^3 + 56*x^4 + .... The related generating function 1 + 3*x^2 + 12*x^4 + 56*x^6 + ... is the zeta function associated to a certain 2 X 2 matrix of noncommuting variables. See Kassel and Reutenauer, Example 5.1. - Peter Bala, Mar 15 2013
a(n) ~ 3*2^(3*n-1) / (sqrt(Pi)*n^(5/2)). - Vaclav Kotesovec, Mar 10 2014
0 = a(n) * (64*a(n+1) - 28*a(n+2)) + a(n+1) * (12*a(n+1) + a(n+2)) if n > 0. - Michael Somos, Apr 03 2014
Integral representation as the n-th moment of the positive function W(x) on (0,8). a(n) = Integral_{x=0..8} x^n*W(x) dx, n=1,2,3,..., where W(x) = sqrt((8-x)^3/x)/(32*Pi). For n=0 the integral is equal to 3/4. This means that a(n) is the n-th moment, n=0,1,2,..., of the probability distribution which is a sum of W(x) as the continuous part and an atom at x=0 with weight 1/4 (Dirac(x)/4). This representation is unique as W(x) is the solution of the Hausdorff moment problem. - Karol A. Penson and Wojciech Mlotkowski, Jul 15 2015
G.f. y satisfies: 0 = 16*x^2*y^2 - (8*x^2+12*x-1)*y + x^2+11*x-1. - Gheorghe Coserea, Nov 22 2016
A(x) = (1 + 4*y - y^2)/4, where y = C(2*x), C being the g.f. for A000108. - Gheorghe Coserea, Apr 10 2018
From Amiram Eldar, Mar 22 2022: (Start)
Sum_{n>=0} 1/a(n) = 1985/1029 + 1280*arcsin(1/(2*sqrt(2)))/(343*sqrt(7)).
Sum_{n>=0} (-1)^n/a(n) = 341/729 - 1280*arcsinh(1/(2*sqrt(2)))/2187. (End)
O.g.f.: x*A(x) is the compositional inverse of x - x^2*B(x), where B(x) is the o.g.f. of A165546. - Alexander Burstein, Aug 02 2024

A069729 Number of rooted non-separable bi-Eulerian planar maps with 2n edges. Bi-Eulerian means all its vertices and faces are of even valency.

Original entry on oeis.org

1, 1, 2, 8, 54, 442, 4032, 39706, 413358, 4487693, 50348500, 579994802, 6827955072, 81854670861, 996529292432, 12293898494952, 153421680489694, 1934041122204318, 24599034335501730, 315369011873625930, 4072021557616191708, 52915860528084306704, 691646518495876375968
Offset: 0

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Comments

The formula from the article by Liskovets and Walsh, p. 218, B'ns(n), gives incorrect data {1, 4, 25, 204, 1964, 21070, 243681, ...}. Here is the incorrect formula rewritten into Mathematica: Table[(Sum[(-1)^j*3^(n - j - 1)*Binomial[2*n + j - 1, j] * Sum[(-1)^k*Binomial[j, k]*Binomial[3*n, n - j - k - 1], {k, 0, Min[j, n - j - 1]}], {j, 0, n - 1}] - 2*Sum[(-1)^j*3^(n - j - 1)*Binomial[2*n + j - 1, j] * Sum[(-1)^k*Binomial[j, k]*Binomial[3*n, n - j - k - 2], {k, 0, Min[j, n - j - 2]}], {j, 0, n - 2}])/n, {n, 1, 20}]. - Vaclav Kotesovec, Apr 13 2018

Examples

			A(x) = 1 + x + 2*x^2 + 8*x^3 + 54*x^4 + 442*x^5 + 4032*x^6 + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[1 + InverseSeries[Series[-(1+x)^4*(18*x^2-30*x-1 + (1-12*x)^(3/2))/(6*(3*x+2)^3), {x, 0, 25}], x], x] (* Vaclav Kotesovec, Apr 14 2018, after Gheorghe Coserea *)
  • PARI
    seq(N) = {
      my(x='x+O('x^(2*N-1)), y=1+serreverse(x/(3*(1+x)^3)), f=(1+3*y-y^2)/3,
         g=subst(f, 'x, 'x^2), v=Vec(subst(g, 'x, serreverse(x*g^2))));
      vector((#v+1)\2, n, v[2*n-1]);
    };
    seq(23) \\ Gheorghe Coserea, Apr 13 2018

Formula

G.f. y=A(x) satisfies 0 = y^9 - y^8 + 18*x*y^6 - 66*x*y^5 + 47*x*y^4 + 81*x^2*y^3 - 81*x^2*y^2 + 27*x^2*y - 3*x^2. - Gheorghe Coserea, Apr 13 2018
a(n) ~ 2^(6*n - 1) * 3^(8*n - 1/2) / (3125 * sqrt(Pi) * 13^(4*n - 5/2) * n^(5/2)). - Vaclav Kotesovec, Apr 13 2018
A(x) = 1 + serreverse(-(1+x)^4*(18*x^2-30*x-1 + (1-12*x)^(3/2))/(6*(3*x+2)^3)); equivalently, it can be rewritten as A(x) = 1 + serreverse((y - 1)*(3*y^2 + y - 1)^4 / (243 * y^6 * (2*y-1)^3)), where y = A000108(3*x). - Gheorghe Coserea, Apr 14 2018

Extensions

More terms from Gheorghe Coserea, Apr 13 2018

A090374 Number of rooted planar 4-constellations with n quadrangles: rooted planar maps with bicolored faces having n black quadrangular faces and an arbitrary number of white faces of degrees multiple to 4.

Original entry on oeis.org

1, 10, 160, 3200, 72960, 1813504, 47923200, 1325629440, 37991219200, 1120005652480, 33789432561664, 1039157228994560, 32480974549811200, 1029463445864448000, 33023079530417356800, 1070513886720329515008, 35026358912891580579840, 1155516042520241436098560
Offset: 1

Views

Author

Valery A. Liskovets, Dec 01 2003

Keywords

Crossrefs

Programs

  • Maple
    A090374 := proc(n)
        5*4^(n-1)*binomial(4*n, n)/((3*n+1)*(3*n+2))
    end proc:
    seq(A090374(n),n=1..40) ; # R. J. Mathar, Mar 29 2023
  • Mathematica
    a[n_] := 5 2^(2n) (4n-1)! / ((n-1)! (3n+2)!);
    Array[a, 18] (* Jean-François Alcover, Aug 28 2019 *)
  • PARI
    vector(20, n, 5*4^(n-1)*binomial(4*n, n)/((3*n+1)*(3*n+2))) \\ Michel Marcus, Dec 11 2014

Formula

a(n) = 5*4^(n-1)*binomial(4*n, n)/((3*n+1)*(3*n+2)). - corrected by Michel Marcus, Dec 11 2014
D-finite with recurrence 3*n*(3*n+2)*(3*n+1)*a(n) -32*(4*n-3)*(2*n-1)*(4*n-1)*a(n-1)=0. - R. J. Mathar, Mar 29 2023

Extensions

More terms from Michel Marcus, Dec 11 2014
Showing 1-3 of 3 results.