cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A342989 Triangle read by rows: T(n,k) is the number of nonseparable rooted toroidal maps with n edges and k faces, n >= 2, k = 1..n-1.

Original entry on oeis.org

1, 4, 4, 10, 39, 10, 20, 190, 190, 20, 35, 651, 1568, 651, 35, 56, 1792, 8344, 8344, 1792, 56, 84, 4242, 33580, 64667, 33580, 4242, 84, 120, 8988, 111100, 361884, 361884, 111100, 8988, 120, 165, 17490, 317680, 1607125, 2713561, 1607125, 317680, 17490, 165
Offset: 2

Views

Author

Andrew Howroyd, Apr 04 2021

Keywords

Comments

The number of vertices is n - k.
Column k is a polynomial of degree 3*k. This is because adding a face can increase the number of vertices whose degree is greater than two by at most two.

Examples

			Triangle begins:
    1;
    4,    4;
   10,   39,     10;
   20,  190,    190,     20;
   35,  651,   1568,    651,     35;
   56, 1792,   8344,   8344,   1792,     56;
   84, 4242,  33580,  64667,  33580,   4242,   84;
  120, 8988, 111100, 361884, 361884, 111100, 8988, 120;
  ...
		

Crossrefs

Columns 1..4 are A000292, A006408, A006409, A006410.
Row sums are A343089.
Cf. A082680 (planar case), A269921 (rooted toroidal maps), A343090, A343092.

Programs

  • PARI
    MQ(n,g,x=1)={ \\ after Quadric in A269921.
      my(Q=matrix(n+1,g+1)); Q[1,1]=x;
      for(n=1, n, for(g=0, min(n\2,g),
         my(t = (1+x)*(2*n-1)/3 * Q[n, 1+g]
           + if(g && n>1, (2*n-3)*(2*n-2)*(2*n-1)/12 * Q[n-1, g])
           + sum(k = 1, n-1, sum(i = 0, g, (2*k-1) * (2*(n-k)-1) * Q[k, 1+i] * Q[n-k, 1+g-i]))/2);
         Q[1+n, 1+g] = t * 6/(n+1); ));
      Q
    }
    F(n,m,y,z)={my(Q=MQ(n,m,z)); sum(n=0, n, x^n*Ser(Q[1+n,]/z, y)) + O(x*x^n)}
    H(n,g=1)={my(p=F(n,g,'y,'z), v=Vec(polcoef(subst(p, x, serreverse(x*p^2)), g, 'y))); vector(#v, n, Vecrev(v[n], n))}
    { my(T=H(10)); for(n=1, #T, print(T[n])) }

Formula

T(n,n-k) = T(n,k).
Showing 1-1 of 1 results.