A006428 Number of loopless tree-rooted planar maps with 3 vertices and n faces and no isthmuses.
0, 3, 36, 135, 360, 798, 1568, 2826, 4770, 7645, 11748, 17433, 25116, 35280, 48480, 65348, 86598, 113031, 145540, 185115, 232848, 289938, 357696, 437550, 531050, 639873, 765828, 910861, 1077060, 1266660, 1482048, 1725768, 2000526, 2309195, 2654820, 3040623
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus. III: Nonseparable maps, J. Combinatorial Theory Ser. B 18 (1975), 222-259.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Crossrefs
Column 3 of A342985.
Programs
-
Mathematica
A006428[n_] := If[n == 1, 0, n*(n + 1)*(n*(n*(n + 6) + 11) - 42)/24]; Array[A006428, 50] (* Paolo Xausa, Aug 20 2025, after Andrew Howroyd *)
-
PARI
a(n) = if(n<2, 0, n*(n+1)*(n^3+6*n^2+11*n-42) / 24) \\ Andrew Howroyd, Apr 03 2021
Formula
a(n) seems to be divisible by n+1. - Ralf Stephan, Sep 01 2003
Conjecture (for n > 1): a(n) = n*(n+1)*(n^3+6*n^2+11*n-42) / 24. - Sean A. Irvine, Apr 10 2017
The above conjectures are true. - Andrew Howroyd, Apr 03 2021
From Chai Wah Wu, Aug 08 2022: (Start)
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 7.
G.f.: x^2*(2*x^5 - 12*x^4 + 30*x^3 - 36*x^2 + 18*x + 3)/(x - 1)^6. (End)
Extensions
Title improved by Sean A. Irvine, Apr 10 2017
Terms a(13) and beyond from Andrew Howroyd, Apr 03 2021