cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006469 Number of rooted toroidal maps with 2 faces, n vertices and no isthmuses.

Original entry on oeis.org

10, 79, 340, 1071, 2772, 6258, 12768, 24090, 42702, 71929, 116116, 180817, 273000, 401268, 576096, 810084, 1118226, 1518195, 2030644, 2679523, 3492412, 4500870, 5740800, 7252830, 9082710, 11281725, 13907124, 17022565, 20698576, 25013032, 30051648, 35908488
Offset: 1

Views

Author

Keywords

Comments

A map on a torus has genus 1.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 2 of A343092.

Programs

  • Mathematica
    A006469[n_] := n*(n + 1)*(n + 2)*(n + 3)*(n*(8*n + 63) + 79)/360;
    Array[A006469, 50] (* Paolo Xausa, Aug 20 2025 *)
  • PARI
    Vec(x*(10 + 9*x - 3*x^2) / (1 - x)^7 + O(x^40)) \\ Colin Barker, Apr 22 2017

Formula

G.f.: x/(x-1)^7*(3*x^2-9*x-10). - Simon Plouffe, Master's thesis, Uqam 1992
From Colin Barker, Apr 22 2017: (Start)
a(n) = (n*(474 + 1247*n + 1215*n^2 + 545*n^3 + 111*n^4 + 8*n^5)) / 360.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)

Extensions

Name improved by Sean A. Irvine, Apr 21 2017