A006469 Number of rooted toroidal maps with 2 faces, n vertices and no isthmuses.
10, 79, 340, 1071, 2772, 6258, 12768, 24090, 42702, 71929, 116116, 180817, 273000, 401268, 576096, 810084, 1118226, 1518195, 2030644, 2679523, 3492412, 4500870, 5740800, 7252830, 9082710, 11281725, 13907124, 17022565, 20698576, 25013032, 30051648, 35908488
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus. III: Nonseparable maps, J. Combinatorial Theory Ser. B 18 (1975), 222-259.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Crossrefs
Column 2 of A343092.
Programs
-
Mathematica
A006469[n_] := n*(n + 1)*(n + 2)*(n + 3)*(n*(8*n + 63) + 79)/360; Array[A006469, 50] (* Paolo Xausa, Aug 20 2025 *)
-
PARI
Vec(x*(10 + 9*x - 3*x^2) / (1 - x)^7 + O(x^40)) \\ Colin Barker, Apr 22 2017
Formula
G.f.: x/(x-1)^7*(3*x^2-9*x-10). - Simon Plouffe, Master's thesis, Uqam 1992
From Colin Barker, Apr 22 2017: (Start)
a(n) = (n*(474 + 1247*n + 1215*n^2 + 545*n^3 + 111*n^4 + 8*n^5)) / 360.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
Extensions
Name improved by Sean A. Irvine, Apr 21 2017
Comments