A048987
Number of possible chess games at the end of the n-th ply.
Original entry on oeis.org
1, 20, 400, 8902, 197281, 4865609, 119060324, 3195901860, 84998978956, 2439530234167, 69352859712417, 2097651003696806, 62854969236701747, 1981066775000396239, 61885021521585529237, 2015099950053364471960
Offset: 0
- A. Bertilsson, Distributed Perft Project [also found a(11)]
- James Grime and Brady Haran, How many chess games are possible? (Numberphile video), 2015.
- Jakub Kowalski, Marek Szykuła, Experimental Studies in General Game Playing: An Experience Report, University of Wrocław, (Poland, 2020).
- F. Labelle, Statistics on chess games
- T. Sillke, number of legal chess positions
- R. P. Stanley, Extremal [Chess] Problems
- Wikipedia, Shannon number
- Index entries for sequences related to number of chess games
a(11) from
François Labelle, Jul 25 2004, who thanks Joost de Heer for providing computer time
a(14) from
Richard Bean on Jul 24 2018, value from Peter Osterlund and Ankan Banerjee
a(15) from
Paul Barnett on Jul 04 2022, value from wikipedia page "Shannon number"
A019319
Number of possible chess diagrams after n plies.
Original entry on oeis.org
1, 20, 400, 5362, 71852, 815677, 9260610, 94305342, 958605819, 8866424380, 81766238574, 692390232505
Offset: 0
Bernd Schwarzkopf (schwarzkopf(AT)uni-duesseldorf.de)
- Bernd Schwarzkopf, Die ersten Züge (The First Moves), Problemkiste (No. 92, April 1994, p. 142-143).
A079485
Number of chess games that end in checkmate after exactly n plies.
Original entry on oeis.org
0, 0, 0, 0, 8, 347, 10828, 435767, 9852036, 400191963, 8790619155, 362290010907, 8361091858959, 346742245764219
Offset: 0
a(n) = 0 for n < 4 and a(4) = 8, because the earliest checkmate can occur at move 2, e.g., with 1.f3 e5, 2.g4 Qh4#. The 8 = 2*2*2 possibilities counted in a(4) all correspond to essentially the same mate, with (1) the alternative 1.f4, (2) the alternative 1...e6, (3) inversed order of white's moves. - _M. F. Hasler_, Mar 03 2022
- H. Simpson, Chess Review, Jan-Feb 1982.
a(11) from
François Labelle, Jul 25 2004, who thanks Joost de Heer for providing computer time.
Link to Extremal [Chess] Problems of R. P. Stanley corrected by
Johannes W. Meijer, Mar 01 2009
A157851
Number of possible Fischer Random Chess games at the end of the n-th ply.
Original entry on oeis.org
960, 18882, 371766, 8224968, 181106056, 4433048830, 107637760217, 2854198413886, 75006431287937
Offset: 0
a(0) = 4 (Bishop) * 4 (Bishop) * 6 (Queen) * 10 (Knights) * 1 (King and Rooks) = 960.
a(1) = 36*18 + 204*19 + 204*19 + 516*20 + 90 + 72 = 18882.
a(2) = 22*18^2 + (162+160+8+6)*19^2 + (454+28+22+20+16)*20^2 + (34+28)*21^2 = 371766.
-
import chess
def A157851(n, b = None): return (b.legal_moves.count() if b else 960) if not n else sum(b.push(m) or A157851(n-1, b)+(not b.pop()) for m in b.legal_moves) if b else sum(A157851(n-1, chess.Board.from_chess960_pos(s)) for s in range(960)) # (For illustration, slow for n > 3.) - M. F. Hasler, Apr 25 2023
a(6) added by Richard Pijl (richard.pijl(AT)telenet.be). -
Johannes W. Meijer, May 29 2010
A007545
Number of chess games with n plies (another version).
Original entry on oeis.org
1, 20, 400, 8902, 197742, 4897256, 120921506, 3284294545, 88867026005
Offset: 0
Ken Thompson (ken(AT)google.com)
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
I am not sure of the precise rules that were used to compute these numbers.
A006494 and
A048987 are the preferred versions of this sequence. -
N. J. A. Sloane.
A114037
Number of games of Gothic chess after n plies plus number of games that terminate (i.e., mate) in fewer than n plies.
Original entry on oeis.org
1, 28, 784, 25283, 808984, 28946187, 1025229212, 39532257395, 1509030960338
Offset: 0
A366476
Number of possible chmess games at the end of the n-th ply.
Original entry on oeis.org
- Daniel C. Dennett, Higher-order truths about chmess, Topoi 25 (1-2):39-41 (2006).
- Nigel Warburton, Review of "I've Been Thinking" by Daniel C. Dennett (Allen Lane, 2023), TLS #6290 (Oct 20, 2023), pp. 8-9.
Showing 1-7 of 7 results.
Comments