A006496 Imaginary part of (1+2i)^n.
0, 2, 4, -2, -24, -38, 44, 278, 336, -718, -3116, -2642, 10296, 33802, 16124, -136762, -354144, -24478, 1721764, 3565918, -1476984, -20783558, -34182196, 35553398, 242017776, 306268562, -597551756, -2726446322, -2465133864, 8701963882, 29729597084, 15949374758
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- George Berzsenyi, Gaussian Fibonacci numbers, Fib. Quart., Vol. 15, No. 3 (1977), pp. 233-236.
- Index entries for Gaussian integers and primes.
- Index entries for linear recurrences with constant coefficients, signature (2,-5).
Programs
-
Magma
I:=[0,2]; [n le 2 select I[n] else 2*Self(n-1)-5*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Dec 21 2011
-
Mathematica
LinearRecurrence[{2,-5},{0,2},30] (* Vincenzo Librandi, Dec 21 2011 *)
-
PARI
a(n)=([1, -2; 2, 1]^n)[1,2] \\ Charles R Greathouse IV, Dec 22 2011
Formula
a(n) = 2*a(n-1) - 5*a(n-2); a(0)=0, a(1)=2. - T. D. Noe, Nov 09 2006
a(n) = - [M^n]1,2, where M = [1, -2; 2, 1]. - _Simone Severini, Apr 25 2007
From R. J. Mathar, Apr 06 2008: (Start)
O.g.f.: 2*x/(1 - 2*x + 5*x^2).
a(n) = 2*A045873(n). (End)
E.g.f.: exp(x)*sin(2*x). - Sergei N. Gladkovskii, Jul 22 2012
a(n)/A006495(n) = -tan(2*n*arctan(phi)), where phi is the golden ratio (A001622). - Amiram Eldar, Jan 13 2022
Extensions
Signs from Christian G. Bower, Nov 15 1998
Corrected by T. D. Noe, Nov 09 2006
More terms from R. J. Mathar, Apr 06 2008
Comments