A006551 Maximal Eulerian numbers.
1, 1, 4, 11, 66, 302, 2416, 15619, 156190, 1310354, 15724248, 162512286, 2275172004, 27971176092, 447538817472, 6382798925475, 114890380658550, 1865385657780650, 37307713155613000, 679562217794156938, 14950368791471452636
Offset: 1
Keywords
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..450
- Digital Library of Mathematical Functions, Table 26.14.1 [_Peter Luschny_, Aug 08 2010]
- Herman Chau, On Enumerating Higher Bruhat Orders Through Deletion and Contraction, arXiv:2412.10532 [math.CO], 2024. See p. 20.
- L. Lesieur and J.-N. Nicolas, On the Eulerian numbers M_n = max_{1<=k<=n} A(n,k), European J. Combin., 13 (1992), 379-399.
- Robert G. Wilson v, Letter to N. J. A. Sloane, Apr. 1994
Programs
-
Maple
a := proc(n) local j,k; k := iquo(n,2); add((-1)^j*binomial(n+1,j)*(k-j+1)^n,j=0..k) end: # Peter Luschny, Aug 08 2010 # Computation by recursion: A006551 := proc(r) local W; W := proc(m) local A,n,k; A:=[seq(1, n=1..m)]; if m < 2 then RETURN(1) fi; for n from 2 to m-1 do for k from 2 to m do A[k] := n*A[k-1]+k*A[k] od od; [A[m-1],A[m]] end: W((r+2+irem(r,2))/2)[2-irem(r,2)] end: # Peter Luschny, Jan 12 2011
-
Mathematica
a[n_] := With[{k = Quotient[n, 2]}, Sum[(-1)^j*Binomial[n+1, j]*(k-j+1)^n, {j, 0, k}]]; Array[a, 25] (* Jean-François Alcover, Feb 19 2017, after Peter Luschny *)
Formula
a(n) = sum_{0<=j<=floor(n/2)} (-1)^j binomial(n+1,j) (floor(n/2)-j+1)^n. [Peter Luschny, Aug 08 2010]
a(n+1)/a(n) ~ n. - Ran Pan, Oct 26 2015
a(n) ~ 2 * sqrt(3) * n^n / exp(n). - Vaclav Kotesovec, Oct 28 2021
Comments