cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006551 Maximal Eulerian numbers.

Original entry on oeis.org

1, 1, 4, 11, 66, 302, 2416, 15619, 156190, 1310354, 15724248, 162512286, 2275172004, 27971176092, 447538817472, 6382798925475, 114890380658550, 1865385657780650, 37307713155613000, 679562217794156938, 14950368791471452636
Offset: 1

Views

Author

Keywords

Comments

From Peter Luschny, Aug 08 2010: (Start)
Define A(n,k) as the number of permutations of {1,2,..,n} with k ascents.
A(n,k) = sum_{j=0}^k (-1)^j binomial(n+1,j)(k-j+1)^n.
Then a(n) = A(n, floor(n/2)). The Digital Library of Mathematical Functions calls the A(n,k) Eulerian numbers. With this terminology a(n) are the middle Eulerian numbers and A180056 the central Eulerian numbers. (End)
Number of permutations of {1,2,..,n} with floor(n/2) descents. - Joerg Arndt, Aug 15 2014

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008292. Bisections are A025585 and A180056.

Programs

  • Maple
    a := proc(n) local j,k; k := iquo(n,2);
    add((-1)^j*binomial(n+1,j)*(k-j+1)^n,j=0..k) end:
    #  Peter Luschny, Aug 08 2010
    # Computation by recursion:
    A006551 := proc(r) local W; W := proc(m) local A,n,k;
    A:=[seq(1, n=1..m)]; if m < 2 then RETURN(1) fi;
    for n from 2 to m-1 do for k from 2 to m do
    A[k] := n*A[k-1]+k*A[k] od od; [A[m-1],A[m]] end:
    W((r+2+irem(r,2))/2)[2-irem(r,2)] end:
    # Peter Luschny, Jan 12 2011
  • Mathematica
    a[n_] := With[{k = Quotient[n, 2]}, Sum[(-1)^j*Binomial[n+1, j]*(k-j+1)^n, {j, 0, k}]]; Array[a, 25] (* Jean-François Alcover, Feb 19 2017, after Peter Luschny *)

Formula

a(n) = sum_{0<=j<=floor(n/2)} (-1)^j binomial(n+1,j) (floor(n/2)-j+1)^n. [Peter Luschny, Aug 08 2010]
a(n+1)/a(n) ~ n. - Ran Pan, Oct 26 2015
a(n) ~ 2 * sqrt(3) * n^n / exp(n). - Vaclav Kotesovec, Oct 28 2021