Original entry on oeis.org
0, 0, 0, 2, 30, 202, 2016, 14394, 151290, 1294478, 15660744, 162298842, 2274318228, 27968231436, 447527038848, 6382757516250, 114890215021650, 1865385066804550, 37307710791708600, 679562209260462054
Offset: 0
-
t[n_, k_] = Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}];
a0 = Table[t[n, Floor[n/2]], {n, 1, 30}];
b0 = Table[Binomial[n, Floor[(n)/2]]^2, {n, 0, 29}];
a=a0-b0
A180056
The number of permutations of {1,2,...,2n} with n ascents.
Original entry on oeis.org
1, 1, 11, 302, 15619, 1310354, 162512286, 27971176092, 6382798925475, 1865385657780650, 679562217794156938, 301958232385734088196, 160755658074834738495566, 101019988341178648636047412, 73990373947612503295166622044, 62481596875767023932367207962680
Offset: 0
-
A180056 :=
proc(n) local j;
add((-1)^j*binomial(2*n+1,j)*(n-j+1)^(2*n),j=0..n)
end:
# A180056_list(m) returns [a_0,a_1,..,a_m]
A180056_list :=
proc(m) local A, R, M, n, k;
R := 1; M := m + 1;
A := array([seq(1, n = 1..M)]);
for n from 2 to M do
for k from 2 to M do
if n = k then R := R, A[k] fi;
A[k] := n*A[k-1] + k*A[k]
od
od;
R
end:
-
A025585[n_] := Sum[(-1)^j*(n-j)^(2*n-1)*Binomial[2*n, j], {j, 0, n}]; a[0] = 1; a[n_] := A025585[n+1]/(2*n+2); Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Jun 28 2013, after Gary Detlefs *)
<< Combinatorica`; Table[Combinatorica`Eulerian[2 n, n], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 15 2016 *)
-
def A180056_list(m):
ret = [1]
M = m + 1
A = [1 for i in range(0, M)]
for n in range(2, M):
for k in range(2, M):
if n == k:
ret.append(A[k])
A[k] = n*A[k-1] + k*A[k]
return ret
A154420
Maximal coefficient of MacMahon polynomial (cf. A060187) p(x,n)=2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2]; that is, a(n) = Max(coefficients(p(x,n))).
Original entry on oeis.org
1, 1, 6, 23, 230, 1682, 23548, 259723, 4675014, 69413294, 1527092468, 28588019814, 743288515164, 16818059163492, 504541774904760, 13397724585164019, 455522635895576646, 13892023109165902550, 527896878148304296900
Offset: 0
-
gf := proc(n, k) local f; f := (x,t) -> x*exp(t*x/k)/(1-x*exp(t*x));
series(f(x,t), t, n+2); ((1-x)/x)^(n+1)*k^n*n!*coeff(%, t, n):
collect(simplify(%), x) end:
seq(coeff(gf(n,1),x,iquo(n,2)),n=0..18); # Middle Eulerian numbers, A006551.
seq(coeff(gf(n,2),x,iquo(n,2)),n=0..18); # Middle midpoint Eulerian numbers.
# Peter Luschny, May 02 2013
-
p[x_, n_] = 2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2];
Table[Max[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x]], {n, 0, 30}]
A304001
Number of permutations of [n] whose up-down signature has a nonnegative total sum.
Original entry on oeis.org
1, 1, 1, 5, 12, 93, 360, 3728, 20160, 259535, 1814400, 27820524, 239500800, 4251096402, 43589145600, 877606592736, 10461394944000, 235288904377275, 3201186852864000, 79476406782222500, 1216451004088320000, 33020655481590446318, 562000363888803840000
Offset: 0
-
b:= proc(u, o, t) option remember; (n->
`if`(t>=n, n!, `if`(t<-n, 0,
add(b(u-j, o+j-1, t-1), j=1..u)+
add(b(u+j-1, o-j, t+1), j=1..o))))(u+o)
end:
a:= n-> `if`(n=0, 1, add(b(j-1, n-j, 0), j=1..n)):
seq(a(n), n=0..25);
# second Maple program:
a:= n-> `if`(irem(n, 2, 'r')=0, ceil(n!/2),
add(combinat[eulerian1](n, j), j=0..r)):
seq(a(n), n=0..25);
-
Eulerian1[n_, k_] := If[k == 0, 1, If[n == 0, 0, Sum[(-1)^j (k - j + 1)^n Binomial[n + 1, j], {j, 0, k + 1}]]];
a[n_] := Module[{r, m}, {r, m} = QuotientRemainder[n, 2]; If[m == 0, Ceiling[n!/2], Sum[Eulerian1[n, j], {j, 0, r}]]];
a /@ Range[0, 25] (* Jean-François Alcover, Mar 26 2021, after 2nd Maple program *)
A154416
Maximal Stirling numbers of the first kind.
Original entry on oeis.org
1, 1, 1, 2, 11, 35, 274, 1624, 13068, 118124, 1026576, 12753576, 120543840, 1931559552, 20313753096, 392156797824, 5056995703824, 102992244837120, 1583313975727488, 34012249593822720, 610116075740491776, 13803759753640704000, 284093315901811468800
Offset: 0
-
Table[Max[Table[StirlingS1[n, m], {m, 0, n}]], {n, 0, 30}]
-
a(n) = vecmax(vector(n+1, m, stirling(n, m-1, 1))); \\ Michel Marcus, Sep 16 2016
Showing 1-5 of 5 results.
Comments