A008828
Triangle read by rows: T(n,k) = number of closed meander systems of order n with k<=n components.
Original entry on oeis.org
1, 2, 2, 8, 12, 5, 42, 84, 56, 14, 262, 640, 580, 240, 42, 1828, 5236, 5894, 3344, 990, 132, 13820, 45164, 60312, 42840, 17472, 4004, 429, 110954, 406012, 624240, 529104, 271240, 85904, 16016, 1430, 933458, 3772008, 6540510, 6413784, 3935238, 1569984, 405552, 63648, 4862
Offset: 1
D. Ivanov, S. K. Lando, A. K. Zvonkin ( LabRI, Bordeaux, France)
Triangle starts:
1;
2 2;
8 12 5;
42 84 56 14;
...
- Andrew Howroyd, Table of n, a(n) for n = 1..210
- Bertrand Duplantier and Emmanuel Guitter, Liouville Quantum Duality and Random Planar Maps, arXiv:2507.12203 [math-ph], 2025. See p. 50.
- P. Di Francesco, O. Golinelli and E. Guitter, Meander, folding and arch statistics, arXiv:hep-th/9506030, 1995.
- Motohisa Fukuda, Ion Nechita, Enumerating meandric systems with large number of components, arXiv preprint arXiv:1609.02756 [math.CO], 2016.
- Iwan Jensen, Enumeration of plane meanders, arXiv:cond-mat/9910313 [cond-mat.stat-mech], 1999.
- Michael La Croix, Approaches to the Enumerative Theory of Meanders [_Gerald McGarvey_, Oct 26 2008]
- Sergei K. Lando and Alexander K. Zvonkin, Plane and projective meanders, Séries Formelles et Combinatoire Algébrique. Laboratoire Bordelais de Recherche Informatique, Université Bordeaux I, 1991, pp. 287-303. (Annotated scanned copy)
- Sergei K. Lando and Alexander K. Zvonkin, Plane and projective meanders, Theoretical Computer Science Vol. 117 (1993) p. 232.
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 10 2004
A380368
Triangle read by rows: T(n,k) is the number of closed forest meander systems with 2n crossings and k components.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 8, 6, 1, 0, 42, 42, 12, 1, 0, 262, 320, 130, 20, 1, 0, 1828, 2618, 1360, 310, 30, 1, 0, 13820, 22582, 14196, 4270, 630, 42, 1, 0, 110954, 203006, 149024, 55524, 11060, 1148, 56, 1, 0, 933458, 1886004, 1577712, 698952, 175560, 25032, 1932, 72, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 8, 6, 1;
0, 42, 42, 12, 1;
0, 262, 320, 130, 20, 1;
0, 1828, 2618, 1360, 310, 30, 1;
0, 13820, 22582, 14196, 4270, 630, 42, 1;
...
The T(3,2) = 6 forest meander systems are the following and their reflections.
______
/ ____ \ ___
/ / \ \ / \
.. / /. /\ .\ \ .. and .. / / \ \ . /\ ..
\/ \/ \/ \/ \/ \/
(2) (4)
.
There are also 6 systems that are not forest meander systems:
____ ______
/ __ \ / \
.. / / \ \ .. and .. / /\ /\ \ ..
\ \/\/ / \ \/ / \/
\____/ \__/
(2) (4)
A006658
Closed meanders with 3 components and 2n bridges.
Original entry on oeis.org
5, 56, 580, 5894, 60312, 624240, 6540510, 69323910, 742518832, 8028001566, 87526544560, 961412790002, 10630964761766, 118257400015312, 1322564193698320, 14863191405246888, 167771227744292160, 1901345329566422790
Offset: 3
- S. K. Lando and A. K. Zvonkin "Plane and projective meanders", Séries Formelles et Combinatoire Algébrique. Laboratoire Bordelais de Recherche Informatique, Université Bordeaux I, 1991, pp. 287-303.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- P. Di Francesco, O. Golinelli and E. Guitter, Meander, folding and arch statistics, arXiv:hep-th/9506030, 1995.
- S. K. Lando and A. K. Zvonkin, Plane and projective meanders, Séries Formelles et Combinatoire Algébrique. Laboratoire Bordelais de Recherche Informatique, Université Bordeaux I, 1991, pp. 287-303. (Annotated scanned copy)
Showing 1-3 of 3 results.
Comments