A046690 Duplicate of A008828.
1, 2, 2, 8, 12, 5, 42, 84, 56, 14, 262, 640, 580, 240, 42, 1828, 5236, 5894, 3344, 990
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
List([0..25],n->(Binomial(2*n,n)/(n+1))^2); # Muniru A Asiru, Mar 28 2018
seq((binomial(2*n,n)/(1+n))^2, n=0..18); # Zerinvary Lajos, Jun 18 2007
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[aux[0, 0, 2 n], {n, 0, 25}] (* Manuel Kauers, Nov 18 2008 *) CatalanNumber[Range[0,30]]^2 (* Harvey P. Dale, Apr 26 2011 *) a[ n_] := If[ n == -1, 0, CatalanNumber[ n]^2] (* Michael Somos, Jul 11 2011 *) a[ n_] := SeriesCoefficient[ (2 EllipticE[ 16 x] - (1 - 16 x) EllipticK[ 16 x] - Pi/2) / ( 2 Pi x), {x, 0, n}] (* Michael Somos, Jul 11 2011 *) a[ n_] := If[ n < 0, 0, (2 n)! SeriesCoefficient[ HypergeometricPFQ[ {1/2}, {2, 2}, 4 x^2], {x, 0, 2 n}]] (* Michael Somos, Jul 11 2011 *)
combinat::dyckWords::count(n)^2 $ n = 0..18 // Zerinvary Lajos, Feb 15 2007
a(n)=(binomial(2*n,n)/(n+1))^2 \\ Charles R Greathouse IV, Jul 16 2011
[catalan_number(i)^2 for i in range(0,19)] # Zerinvary Lajos, May 17 2009
A005316 = Cases[Import["https://oeis.org/A005316/b005316.txt", "Table"], {, }][[All, 2]]; a[n_] := If[n == 0, 1, A005316[[2n]]]; a /@ Range[0, 28] (* Jean-François Alcover, Sep 25 2019 *)
a006659 n = 2 * a007318' (2 * n + 2) (n - 1) -- Reinhard Zumkeller, Jun 18 2012
seq(2*binomial(2*n+2,n-1),n=1..22); # Emeric Deutsch, Oct 09 2008
f[x_] := 32/((1 + Sqrt[1 - 4x])^4*Sqrt[1 - 4x]); CoefficientList[ Series[ f[x], {x, 0, 21}], x] (* Jean-François Alcover, Dec 07 2011 *) CoefficientList[Series[4*Exp[2x](BesselI[1,2*x]+ x(x-1)(BesselI[0,2x]+BesselI[1,2x]))/x^2,{x,0,22}],x]Table[n!,{n,0,22}] (* Stefano Spezia, May 10 2022 *)
a(n)=2*binomial(2*n+2,n-1) \\ Charles R Greathouse IV, Dec 07 2011
x='x+O('x^100); Vec(32/(sqrt(1-4*x)*(1+sqrt(1-4*x))^4)) \\ Altug Alkan, Oct 14 2015
Triangle begins: 1, 1, 1,1, 2,1, 3,2,3, 8,3,3, 14,7,7,14, 42,14,11,14, 81,36,28,36,81, 262,81,57,57,81, 538,221,155,155,221,538, ...
A008828 = Import["https://oeis.org/A008828/b008828.txt", "Table"][[All, 2]]; a[n_] := A008828[[(n^2 - n + 4)/2]]; a /@ Range[2, 20] (* Jean-François Alcover, Sep 25 2019 *)
[4*Factorial(2*n)/(3*Factorial(n-4)*Factorial(n+6))* (n^4+20*n^3+107*n^2-107*n+15): n in [4..25]]; // Vincenzo Librandi, Nov 23 2015
Table[4 (2 n)!/(3 (n - 4)! (n+6)!) (n^4 + 20 n^3 + 107 n^2 - 107 n + 15), {n, 4, 30}] (* Vincenzo Librandi, Nov 23 2015 *)
Triangle begins: 1; 0, 1; 0, 2, 1; 0, 8, 6, 1; 0, 42, 42, 12, 1; 0, 262, 320, 130, 20, 1; 0, 1828, 2618, 1360, 310, 30, 1; 0, 13820, 22582, 14196, 4270, 630, 42, 1; ... The T(3,2) = 6 forest meander systems are the following and their reflections. ______ / ____ \ ___ / / \ \ / \ .. / /. /\ .\ \ .. and .. / / \ \ . /\ .. \/ \/ \/ \/ \/ \/ (2) (4) . There are also 6 systems that are not forest meander systems: ____ ______ / __ \ / \ .. / / \ \ .. and .. / /\ /\ \ .. \ \/\/ / \ \/ / \/ \____/ \__/ (2) (4)
A008828 = Import["https://oeis.org/A008828/b008828.txt", "Table"][[All, 2]]; a[n_] := A008828[[(n^2 - n + 6)/2]]; a /@ Range[3, 20] (* Jean-François Alcover, Sep 25 2019 *)
Triangle begins: k=0 1 2 3 4 5 6 7 8 9 10 11 12 n=0: 1; n=1: 1; n=2: 3, 0, 1; n=3: 14, 0, 8, 10, 2, 2; n=4: 81, 0, 59, 162, 70, 66, 82, 22, 19, 6, 7, 0, 2; ... Row n = 3 counts the following k-crossing partitions. T(3,0) = 14: T(3,2) = 8: T(3,3) = 10: T(3,4) = 2: T(3,5) = 2: (1,2,3,4,5,6) (3,4,1,6,5,2) (1,2,5,6,3,4) (3,2,5,6,1,4) (3,6,1,4,5,2) (1,2,3,6,5,4) (3,4,5,6,1,2) (1,4,3,6,5,2) (3,6,1,2,5,4) (5,2,3,6,1,4) (1,2,5,4,3,6) (3,6,5,4,1,2) (1,4,5,2,3,6) (1,4,3,2,5,6) (5,2,1,6,3,4) (1,6,3,2,5,4) (1,4,5,6,3,2) (5,4,3,6,1,2) (3,2,5,4,1,6) (1,6,3,4,5,2) (5,6,1,2,3,4) (3,4,1,2,5,6) (1,6,5,2,3,4) (5,6,1,4,3,2) (3,6,5,2,1,4) (1,6,5,4,3,2) (5,6,3,2,1,4) (5,2,1,4,3,6) (3,2,1,4,5,6) (5,4,1,6,3,2) (3,2,1,6,5,4) (5,6,3,4,1,2) (3,4,5,2,1,6) (5,2,3,4,1,6) (5,4,1,2,3,6) (5,4,3,2,1,6)
# see linked program
Comments