cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A046690 Duplicate of A008828.

Original entry on oeis.org

1, 2, 2, 8, 12, 5, 42, 84, 56, 14, 262, 640, 580, 240, 42, 1828, 5236, 5894, 3344, 990
Offset: 1

Views

Author

Keywords

A001246 Squares of Catalan numbers.

Original entry on oeis.org

1, 1, 4, 25, 196, 1764, 17424, 184041, 2044900, 23639044, 282105616, 3455793796, 43268992144, 551900410000, 7152629313600, 93990019574025, 1250164827828900, 16807771574144100, 228138727737690000, 3123219182728976100, 43087676888260976400, 598598221893939680400, 8369059450146650049600
Offset: 0

Views

Author

Keywords

Comments

Also multi-component meanders.
Also, number of walks within N^2 (the first quadrant of Z^2) starting and ending at (0,0) and consisting of 2 n steps taken from {(-1, -1), (-1, 1), (1, -1), (1, 1)}. [Evans and Pugh show that this is the same sequence.] - N. J. A. Sloane, Jul 04 2014
This is probably the diagonal of A209805. In this case a(n) = number of non-crossing partitions up to rotation of [2n+1] into n+1 blocks. See "Partition related number triangles" in Links section. - Tilman Piesk, Apr 09 2012
a(n) is also the number of regular cover graphs of lattice quotients of essential lattice congruences of the weak order on the symmetric group S_{n+1}. See Table 1 in the Hoang/Mütze reference in the Links section. - Torsten Muetze, Nov 28 2019

Crossrefs

Row sums of triangle A008828.
Probably diagonal of A209805.

Programs

  • GAP
    List([0..25],n->(Binomial(2*n,n)/(n+1))^2); # Muniru A Asiru, Mar 28 2018
  • Maple
    seq((binomial(2*n,n)/(1+n))^2, n=0..18); # Zerinvary Lajos, Jun 18 2007
  • Mathematica
    aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[aux[0, 0, 2 n], {n, 0, 25}] (* Manuel Kauers, Nov 18 2008 *)
    CatalanNumber[Range[0,30]]^2  (* Harvey P. Dale, Apr 26 2011 *)
    a[ n_] := If[ n == -1, 0, CatalanNumber[ n]^2] (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[ (2 EllipticE[ 16 x] - (1 - 16 x) EllipticK[ 16 x] - Pi/2) / ( 2 Pi x), {x, 0, n}] (* Michael Somos, Jul 11 2011 *)
    a[ n_] := If[ n < 0, 0, (2 n)! SeriesCoefficient[ HypergeometricPFQ[ {1/2}, {2, 2}, 4 x^2], {x, 0, 2 n}]] (* Michael Somos, Jul 11 2011 *)
  • MuPAD
    combinat::dyckWords::count(n)^2 $ n = 0..18 // Zerinvary Lajos, Feb 15 2007
    
  • PARI
    a(n)=(binomial(2*n,n)/(n+1))^2 \\ Charles R Greathouse IV, Jul 16 2011
    
  • Sage
    [catalan_number(i)^2 for i in range(0,19)] # Zerinvary Lajos, May 17 2009
    

Formula

G.f.: -1/(4*x)+1/2*(16*x-1)/x * EllipticK(4*x^(1/2))/Pi + 1/x*EllipticE(4*x^(1/2))/Pi. - Vladeta Jovovic, Oct 12 2003
G.f.: 3F2( (1, 1/2, 1/2); (2, 2); 16x) = (-1 + 2F1( (-1/2, -1/2); (1); 16x))/(4*x) - Olivier Gérard, Feb 16 2011
E.g.f.: hypergeom([1/2], [2, 2], 4*x^2) = 2*BesselI(0, 2*x)^2-BesselI(0, 2*x)*BesselI(1, 2*x)/x-2*BesselI(1, 2*x)^2. - Vladeta Jovovic, Jun 04 2005
D-finite with recurrence (n+1)^2*a(n) -4*(2*n-1)^2*a(n-1)=0. - R. J. Mathar, Jan 04 2013
From Ilya Gutkovskiy, Mar 23 2017: (Start)
a(n) ~ 16^n/(Pi*n^3).
Sum_{n>=0} 1/a(n) = 3F2(1,2,2; 1/2,1/2; 1/16) = 2.295732295098655... (End)
Sum {n>=0} a(n)*(n+1)/16^n = 4/Pi. This is a kind of Ramanujan-Sato series. - Ralf Steiner, Mar 23 2017
From Peter Bala, Mar 28 2018: (Start)
a(n) = 1/(2*n + 1)*f(2*n)/(f(n)*f(n)), where f(n) = n!*(n+1)!. Cf. Catalan(n) = 1/(n + 1)*(2*n)!/(n!*n!).
a(n) = 1/(2*n + 1)*A000891(n).
a(n) = (n + 2)/(2*n + 1)*A000356(n).
a(n) = (n + 2)/3*A186264(n-1). (End)
From Amiram Eldar, Mar 27 2022: (Start)
a(n) = A000108(n)^2.
Sum_{n>=0} a(n)/16^n = 16/Pi - 4. (End)

Extensions

As a result of the work of Evans and Pugh, it was possible to merge A151342 with this sequence. - N. J. A. Sloane, Jul 04 2014

A005315 Closed meandric numbers (or meanders): number of ways a loop can cross a road 2n times.

Original entry on oeis.org

1, 1, 2, 8, 42, 262, 1828, 13820, 110954, 933458, 8152860, 73424650, 678390116, 6405031050, 61606881612, 602188541928, 5969806669034, 59923200729046, 608188709574124, 6234277838531806, 64477712119584604, 672265814872772972, 7060941974458061392
Offset: 0

Views

Author

N. J. A. Sloane, J. A. Reeds (reeds(AT)idaccr.org)

Keywords

Comments

There is a 1-to-1 correspondence between loops crossing a road 2n times and lines crossing a road 2n-1 times.

References

  • S. K. Lando and A. K. Zvonkin, Plane and projective meanders, Séries Formelles et Combinatoire Algébrique. Laboratoire Bordelais de Recherche Informatique, Université Bordeaux I, 1991, pp. 287-303.
  • S. K. Lando and A. K. Zvonkin, Meanders, Selecta Mathematica Sovietica, Vol. 11, Number 2, pp. 117-144, 1992.
  • A. Phillips, Simple Alternating Transit Mazes, preprint. Abridged version appeared as "La topologia dei labirinti," in M. Emmer, editor, L'Occhio di Horus: Itinerari nell'Imaginario Matematico. Istituto della Enciclopedia Italia, Rome, 1989, pp. 57-67.
  • V. R. Pratt, personal communication.
  • J. A. Reeds and L. A. Shepp, An upper bound on the meander constant, preprint, May 25, 1999. [Obtains upper bound of 13.01]
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • For additional references, see A005316.

Crossrefs

These are the odd-numbered terms of A005316. Cf. A077054. For nonisomorphic solutions, see A077460.
A column of triangle A008828.

Programs

Formula

a(n) = A005316(2n-1) for n>0.

A006659 Number of closed meander systems of order n+1 with n components.

Original entry on oeis.org

2, 12, 56, 240, 990, 4004, 16016, 63648, 251940, 994840, 3922512, 15452320, 60843510, 239519700, 942871200, 3711935040, 14615744220, 57562286760, 226760523600, 893550621600, 3522078700140, 13887053160552
Offset: 1

Views

Author

D. Ivanov, S. K. Lando and A. K. Zvonkin (zvonkin(AT)labri.u-bordeaux.fr)

Keywords

Comments

a(n) is the total number of long interior inclines in all Dyck (n+2)-paths. An incline is a maximal subpath of like steps (all Us or all Ds); interior means it does not start or end the path; long means of length >= 2. Example: for n=1, the 5 Dyck 3-paths are shown with long interior inclines in uppercase: uuuddd, uududd, udUUdd, ududud, uuDDud and so a(1)=2. - David Callan, Jul 03 2006
a(n) is the number of corners in all parallelogram polyominoes of semiperimeter n+3. - Emeric Deutsch, Oct 09 2008

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals 2*A002694(n+1).
A diagonal of triangle A008828.

Programs

  • Haskell
    a006659 n = 2 * a007318' (2 * n + 2) (n - 1)
    -- Reinhard Zumkeller, Jun 18 2012
    
  • Maple
    seq(2*binomial(2*n+2,n-1),n=1..22); # Emeric Deutsch, Oct 09 2008
  • Mathematica
    f[x_] := 32/((1 + Sqrt[1 - 4x])^4*Sqrt[1 - 4x]); CoefficientList[ Series[ f[x], {x, 0, 21}], x] (* Jean-François Alcover, Dec 07 2011 *)
    CoefficientList[Series[4*Exp[2x](BesselI[1,2*x]+ x(x-1)(BesselI[0,2x]+BesselI[1,2x]))/x^2,{x,0,22}],x]Table[n!,{n,0,22}] (* Stefano Spezia, May 10 2022 *)
  • PARI
    a(n)=2*binomial(2*n+2,n-1) \\ Charles R Greathouse IV, Dec 07 2011
    
  • PARI
    x='x+O('x^100); Vec(32/(sqrt(1-4*x)*(1+sqrt(1-4*x))^4)) \\ Altug Alkan, Oct 14 2015

Formula

G.f.: 32/(sqrt(1-4x)*(1+sqrt(1-4x))^4).
a(n) = (n+1) * A002057(n). - Ralf Stephan, Aug 31 2003
a(n) = 2*binomial(2n+2, n-1). - Emeric Deutsch, Oct 09 2008
a(n) = {(-56 - 30*n - 4*n^2)*a(n+1) + (8*n+12+n^2)*a(n+2), a(0)=2, a(1)=12}. - Simon Plouffe (master's thesis, 1992)
a(n) ~ 2^(2*n+3)/sqrt(n*Pi). - Charles R Greathouse IV, Dec 07 2011
E.g.f.: 4*exp(2*x)*(I_1(2*x) + x*(x - 1)*(I_0(2*x) + I_1(2*x)))/x^2, where I_n(x) is the modified Bessel function of the first kind. - Stefano Spezia, May 09 2022
From Amiram Eldar, May 15 2022: (Start)
Sum_{n>=1} 1/a(n) = 23/12 - 13*Pi/(18*sqrt(3)).
Sum_{n>=1} (-1)^(n+1)/a(n) = 53*log(phi)/(5*sqrt(5)) - 37/20, where phi is the golden ratio (A001622). (End)

A259974 Irregular triangle read by rows: T(n,k) = number of meanders with n bridges in which the first bridge is bridge k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 2, 3, 8, 3, 3, 14, 7, 7, 14, 42, 14, 11, 14, 81, 36, 28, 36, 81, 262, 81, 57, 57, 81, 538, 221, 155, 155, 221, 538, 1828, 538, 353, 316, 353, 538, 3926, 1530, 1003, 902, 1003, 1530, 3926, 13820, 3926, 2458, 2053, 2053, 2458, 3926, 30694, 11510, 7214, 6059, 6059, 7214, 11510, 30694, 110954, 30694, 18575, 14810, 13827, 14810, 18575, 30694
Offset: 1

Views

Author

N. J. A. Sloane, Jul 12 2015

Keywords

Examples

			Triangle begins:
1,
1,
1,1,
2,1,
3,2,3,
8,3,3,
14,7,7,14,
42,14,11,14,
81,36,28,36,81,
262,81,57,57,81,
538,221,155,155,221,538,
...
		

References

  • Lando, S. K. and Zvonkin, A. K. Plane and projective meanders. Conference on Formal Power Series and Algebraic Combinatorics (Bordeaux, 1991).
  • Lando, S. K. and Zvonkin, A. K. Meanders. In Selected translations. Selecta Math. Soviet. 11 (1992), no. 2, 117-144.

Crossrefs

Diagonals are A005316, A006660, A006661, A006662. Cf. A008828.

Extensions

T(12,k)-T(40,k) from Andrew Howroyd, Dec 15 2015

A006657 Number of closed meanders with 2 components and 2n bridges.

Original entry on oeis.org

2, 12, 84, 640, 5236, 45164, 406012, 3772008, 35994184, 351173328, 3490681428, 35253449296, 360946635312, 3739935635756, 39159200588780, 413836299216608, 4409705753032648, 47337525317450816, 511563350415103008
Offset: 2

Views

Author

Keywords

References

  • S. K. Lando and A. K. Zvonkin "Plane and projective meanders", Séries Formelles et Combinatoire Algébrique. Laboratoire Bordelais de Recherche Informatique, Université Bordeaux I, 1991, pp. 287-303.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005315.
A column of triangle A008828.

Programs

Extensions

a(13)-a(20) from Andrew Howroyd, Nov 22 2015

A007746 Number of ways for n-3 nonintersecting loops to cross a line 2n times.

Original entry on oeis.org

42, 640, 5894, 42840, 271240, 1569984, 8536890, 44346456, 222516030, 1086685600, 5193298110, 24384586200, 112831907760, 515709552000, 2332549535400, 10455495457248, 46500885666900, 205401168733824, 901819865269180, 3938266773556720, 17116175702216624
Offset: 4

Views

Author

Philippe Di Francesco (philippe(AT)amoco.saclay.cea.fr)

Keywords

Crossrefs

A diagonal of triangle A008828.

Programs

  • Magma
    [4*Factorial(2*n)/(3*Factorial(n-4)*Factorial(n+6))* (n^4+20*n^3+107*n^2-107*n+15): n in [4..25]]; // Vincenzo Librandi, Nov 23 2015
  • Mathematica
    Table[4 (2 n)!/(3 (n - 4)! (n+6)!) (n^4 + 20 n^3 + 107 n^2 - 107 n + 15), {n, 4, 30}] (* Vincenzo Librandi, Nov 23 2015 *)

Formula

a(n) = 4 * (2*n)! * (n^4+20*n^3+107*n^2-107*n+15) / ( 3*(n-4)! * (n+6)! ).

A380368 Triangle read by rows: T(n,k) is the number of closed forest meander systems with 2n crossings and k components.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 8, 6, 1, 0, 42, 42, 12, 1, 0, 262, 320, 130, 20, 1, 0, 1828, 2618, 1360, 310, 30, 1, 0, 13820, 22582, 14196, 4270, 630, 42, 1, 0, 110954, 203006, 149024, 55524, 11060, 1148, 56, 1, 0, 933458, 1886004, 1577712, 698952, 175560, 25032, 1932, 72, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 31 2025

Keywords

Comments

A forest meander system is a meander system that does not have any components which are entirely enclosed by another. An equivalent condition is that all components have their least point at an odd index (if points are numbered from 1). The greatest point will then be at an even index.
Exactly half of all meander systems with two components are forest meander systems. This is because when the meander's permutation is rotated one step at a time, one meander will be enclosed in the other on every second step.

Examples

			Triangle begins:
  1;
  0,     1;
  0,     2,     1;
  0,     8,     6,     1;
  0,    42,    42,    12,    1;
  0,   262,   320,   130,   20,   1;
  0,  1828,  2618,  1360,  310,  30,  1;
  0, 13820, 22582, 14196, 4270, 630, 42, 1;
  ...
The T(3,2) = 6 forest meander systems are the following and their reflections.
       ______
      / ____ \                 ___
     / /    \ \               /   \
 .. / /. /\ .\ \ ..   and .. / / \ \ . /\ ..
    \/   \/   \/             \/   \/   \/
        (2)                     (4)
.
There are also 6 systems that are not forest meander systems:
      ____                    ______
     / __ \                  /      \
 .. / /  \ \ ..      and .. / /\  /\ \ ..
    \ \/\/ /                \ \/ /  \/
     \____/                  \__/
       (2)                     (4)
		

Crossrefs

Row sums are A060148.
Column k=1 is A005315.
Column k=2 is half of A006657.
Main diagonal is A000012.
Second diagonal is A002378.
Cf. A008828 (all meander systems), A060174, A060198.

A006658 Closed meanders with 3 components and 2n bridges.

Original entry on oeis.org

5, 56, 580, 5894, 60312, 624240, 6540510, 69323910, 742518832, 8028001566, 87526544560, 961412790002, 10630964761766, 118257400015312, 1322564193698320, 14863191405246888, 167771227744292160, 1901345329566422790
Offset: 3

Views

Author

Keywords

References

  • S. K. Lando and A. K. Zvonkin "Plane and projective meanders", Séries Formelles et Combinatoire Algébrique. Laboratoire Bordelais de Recherche Informatique, Université Bordeaux I, 1991, pp. 287-303.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A column of triangle A008828.

Programs

Extensions

a(13)-a(20) from Andrew Howroyd, Nov 22 2015

A368054 Irregular triangle read by rows: T(n,k) is the number of k-crossing partitions on 2n nodes, where all partition terms alternate in parity, counted up to reflection.

Original entry on oeis.org

1, 1, 3, 0, 1, 14, 0, 8, 10, 2, 2, 81, 0, 59, 162, 70, 66, 82, 22, 19, 6, 7, 0, 2, 538, 0, 454, 1952, 1229, 1208, 2516, 1803, 1181, 1148, 998, 478, 370, 279, 125, 76, 26, 13, 3, 3, 3926, 0, 3658, 21608, 17083, 17811, 48542, 51306, 40081, 51660, 59023, 42327
Offset: 0

Views

Author

John Tyler Rascoe, Dec 09 2023

Keywords

Comments

The 0-crossing partitions counted in A005316 all have terms that alternate in parity. Also, for an even number of nodes the partitions 1432 and 2341 count the same meandric path. This triangle aims to reduce the total number of k-crossing partitions considered from (2*n)! to (n!)^2, see Irwin link.

Examples

			Triangle begins:
       k=0  1   2    3   4   5   6   7   8   9  10  11  12
  n=0:   1;
  n=1:   1;
  n=2:   3, 0,  1;
  n=3:  14, 0,  8,  10,  2,  2;
  n=4:  81, 0, 59, 162, 70, 66, 82, 22, 19,  6,  7,  0,  2;
  ...
Row n = 3 counts the following k-crossing partitions.
T(3,0) = 14:   T(3,2) = 8:    T(3,3) = 10:   T(3,4) = 2:    T(3,5) = 2:
(1,2,3,4,5,6)  (3,4,1,6,5,2)  (1,2,5,6,3,4)  (3,2,5,6,1,4)  (3,6,1,4,5,2)
(1,2,3,6,5,4)  (3,4,5,6,1,2)  (1,4,3,6,5,2)  (3,6,1,2,5,4)  (5,2,3,6,1,4)
(1,2,5,4,3,6)  (3,6,5,4,1,2)  (1,4,5,2,3,6)
(1,4,3,2,5,6)  (5,2,1,6,3,4)  (1,6,3,2,5,4)
(1,4,5,6,3,2)  (5,4,3,6,1,2)  (3,2,5,4,1,6)
(1,6,3,4,5,2)  (5,6,1,2,3,4)  (3,4,1,2,5,6)
(1,6,5,2,3,4)  (5,6,1,4,3,2)  (3,6,5,2,1,4)
(1,6,5,4,3,2)  (5,6,3,2,1,4)  (5,2,1,4,3,6)
(3,2,1,4,5,6)                 (5,4,1,6,3,2)
(3,2,1,6,5,4)                 (5,6,3,4,1,2)
(3,4,5,2,1,6)
(5,2,3,4,1,6)
(5,4,1,2,3,6)
(5,4,3,2,1,6)
		

Crossrefs

Cf. A077054 (column k=0), A001044 (row sums).

Programs

  • Python
    # see linked program
Showing 1-10 of 10 results.