cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A056532 Bond percolation series for square lattice near a wall.

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 17, 26, 47, 72, 129, 194, 348, 516, 929, 1351, 2456, 3506, 6471, 8929, 17029, 22579, 44707, 55969, 117836, 137313, 311654, 324989, 833496, 756309, 2242031, 1623709, 6176873, 3240757, 17192674, 4663165, 49481888, 1180046, 144593684, -40561669, 439929287, -230303695, 1351358555, -1116634980, 4353263697
Offset: 0

Views

Author

N. J. A. Sloane, Aug 27 2000

Keywords

Crossrefs

A122056 Expansion of g.f. x^2/((1 - x)^4*(1 + x)*(1 + x^2)*(1 + x^4)).

Original entry on oeis.org

0, 0, 1, 3, 6, 10, 15, 21, 28, 36, 46, 58, 72, 88, 106, 126, 148, 172, 199, 229, 262, 298, 337, 379, 424, 472, 524, 580, 640, 704, 772, 844, 920, 1000, 1085, 1175, 1270, 1370, 1475, 1585, 1700, 1820, 1946, 2078, 2216, 2360, 2510, 2666, 2828, 2996, 3171, 3353, 3542, 3738
Offset: 0

Views

Author

Roger L. Bagula, Sep 13 2006

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 72); [0,0] cat Coefficients(R!( x^2/((1-x)^4*(1+x)*(1+x^2)*(1+x^4)) )); // G. C. Greubel, Dec 29 2022
    
  • Mathematica
    p[n_]:= p[n] = If[n<0, 1, Cancel[Simplify[(x^(n-1)*p[n-1]*p[n-8] + p[n-4]*p[n-5])/p[n-9]]]]; Table[Exponent[p[n], x], {n,0,30}]
    LinearRecurrence[{3,-3,1,0,0,0,0,1,-3,3,-1}, {0,0,1,3,6,10,15,21,28,36, 46,58,72}, 61] (* G. C. Greubel, Dec 29 2022 *)
  • SageMath
    def A122056_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^2/((1-x)^4*(1+x)*(1+x^2)*(1+x^4)) ).list()
    A122056_list(70) # G. C. Greubel, Dec 29 2022

Formula

a(n) = degree(p(n)) with p(n) = (x^(n-1)*p(n-1)*p(n-8) + p(n-4)*p(n-5))/p(n-9).
From Colin Barker, Oct 08 2019: (Start)
G.f.: x^2 / ((1-x)^4*(1+x)*(1+x^2)*(1+x^4)).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-8) - 3*a(n-9) + 3*a(n-10) - a(n-11) for n > 10. (End)
a(n) = (1/192)*(4*n^3 +42*n^2 +80*n -63 +3*(-1)^n) + (1/32)*(i^n*(1 + (-1)^n) + i^(n+1)*(1-(-1)^n)) + (1/4)*(b(n) -b(n-1) -2*b(n-2) -2*b(n -3)), where b(n) = A014017(n). - G. C. Greubel, Dec 29 2022

Extensions

Edited by G. C. Greubel, Dec 29 2022
Showing 1-2 of 2 results.