A006744 Number of n-step self-avoiding walks on a Manhattan lattice.
1, 2, 4, 7, 13, 24, 44, 77, 139, 250, 450, 788, 1403, 2498, 4447, 7782, 13769, 24363, 43106, 75396, 132865, 234171, 412731, 721433, 1267901, 2228666, 3917654, 6843596, 12004150, 21059478, 36947904, 64506130, 112983428, 197921386, 346735329, 605046571, 1058544744, 1852200487
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- H. Jamke, Table of n, a(n) for n=1..53 [From Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 13 2010]
- D. Bennett-Wood, J. L. Cardy, I. Enting, A. J. Guttmann and A. L. Owczarek, On the Non-Universality of a Critical Exponent for Self-Avoiding Walks, Nuc. Phys. B, 528, 533-552, 1998. [From Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 13 2010] Also wayback, or arxiv:9805146.
- A. Malakis, Self-avoiding walks on oriented square lattices, J. Phys. A: Math. Gen. 8 (1975), no 12, 1885-1898.
- S. S. Manna and A. J. Guttmann, Kinetic growth walks and trails on oriented square lattices: Hull percolation and percolation hulls, J. Phys. A 22 (1989), 3113-3122.
Crossrefs
Cf. A117633.
Comments