A302336 Linear coefficient (in absolute value) of the quadratic polynomials giving the numbers of 2k-cycles in the n X n grid graph for n >= k-1.
0, 2, 6, 28, 140, 740, 4056, 22904, 132344, 778832, 4652404, 28140536, 172021360, 1061153560, 6597813620, 41307119692, 260198053200, 1647958588568, 10488324116052, 67046234983840, 430300354820176, 2771678138269600, 17912347088664868, 116113406138798112
Offset: 1
Keywords
Examples
Let p(k,n) be the number of 2k-cycles in the n X n grid graph for n >= k-1. p(k,n) are quadratic polynomials in n, with the first few given by: p(1,n) = 0, p(2,n) = 1 - 2*n + n^2, p(3,n) = 4 - 6*n + 2*n^2, p(4,n) = 26 - 28*n + 7*n^2, p(5,n) = 164 - 140*n + 28*n^2, p(6,n) = 1046 - 740*n + 124*n^2, p(7,n) = 6672 - 4056*n + 588*n^2, p(8,n) = 42790 - 22904*n + 2938*n^2, p(9,n) = 275888 - 132344*n + 15268*n^2, ... The linear coefficients give a(n), so the first few are 0, 2, 6, 28, 140, .... - _Eric W. Weisstein_, Apr 05 2018
Links
- Eric Weisstein's World of Mathematics, Graph Cycle
- Eric Weisstein's World of Mathematics, Grid Graph
Crossrefs
Formula
a(n) = 2*A006772(n). - Andrey Zabolotskiy, Nov 09 2018
Extensions
Terms a(12) and beyond added using data from A006772 by Andrey Zabolotskiy, Feb 10 2022