cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006864 Number of Hamiltonian cycles in P_4 X P_n.

Original entry on oeis.org

0, 1, 2, 6, 14, 37, 92, 236, 596, 1517, 3846, 9770, 24794, 62953, 159800, 405688, 1029864, 2614457, 6637066, 16849006, 42773094, 108584525, 275654292, 699780452, 1776473532, 4509783909, 11448608270, 29063617746, 73781357746, 187302518353, 475489124976, 1207084188912
Offset: 1

Views

Author

kwong(AT)cs.fredonia.edu (Harris Kwong), N. J. A. Sloane, Simon Plouffe and Frans J. Faase

Keywords

Comments

Wazir tours on a 4 X n grid. There are two closed loops for a 4x4 board, appearing as an H and a C, for example. - Ed Pegg Jr, Sep 07 2010

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
  • Kwong, Y. H. H.; Enumeration of Hamiltonian cycles in P_4 X P_n and P_5 X P_n. Ars Combin. 33 (1992), 87-96.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row/column 4 of A321172.

Programs

  • Mathematica
    LinearRecurrence[{2, 2, -2, 1}, {0, 1, 2, 6}, 50] (* Paolo Xausa, Jul 01 2025 *)
  • Maxima
    a(n):=sum ( sum ( binomial(k,j) *sum (binomial(j, i-j)*2^j *binomial(k-j,n-i-3*(k-j))*(-2)^(4*(k-j)-(n-i)), i,j,n-k+j) , j,0,k) , k,1,n ); /* Vladimir Kruchinin, Aug 04 2010 */

Formula

a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) + a(n-4).
G.f.: x^2/(1-2x-2x^2+2x^3-x^4). - R. J. Mathar, Dec 16 2008
a(n)=sum ( sum ( binomial(k,j) * sum (binomial(j, i-j)*2^j *binomial(k-j,n-i-3*(k-j))*(-2)^(4*(k-j)-(n-i)), i,j,n-k+j) , j,0,k) , k,1,n ), n>0. - Vladimir Kruchinin, Aug 04 2010
a(n) = Sum_{k=1..n-1} A181688(k). - Kevin McShane, Aug 04 2019