A006876 Mu-molecules in Mandelbrot set whose seeds have period n.
1, 0, 1, 3, 11, 20, 57, 108, 240, 472, 1013, 1959, 4083, 8052, 16315, 32496, 65519, 130464, 262125, 523209, 1048353, 2095084, 4194281, 8384100, 16777120, 33546216, 67108068, 134201223, 268435427, 536836484, 1073741793, 2147417952, 4294964173, 8589803488, 17179868739
Offset: 1
Keywords
References
- B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, NY, 1982, p. 183.
- R. Penrose, The Emperor's New Mind, Penguin Books, NY, 1991, p. 138.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Cheng Zhang, Table of n, a(n) for n = 1..1000
- R. P. Munafo, Enumeration of Features
Programs
-
Mathematica
degRp[n_] := Sum[MoebiusMu[n/d] 2^(d - 1), {d, Divisors[n]}]; Table[degRp[n]*2 - Sum[EulerPhi[n/d] degRp[d], {d, Divisors[n]}], {n, 1, 100}] (* Cheng Zhang, Apr 02 2012 *)
-
PARI
A000740(n)=sumdiv(n,d,moebius(n/d)<<(d-1)) a(n)=2*A000740(n)-sumdiv(n, d, eulerphi(n/d)*A000740(d)) \\ Charles R Greathouse IV, Feb 18 2013
Formula
a(n) = 2*l(n) - sum_{d|n} phi(n/d)*l(d), where l(n) = sum_{d|n} mu(n/d) 2^(d-1) (A000740), and phi(n) and mu(n) are the Euler totient function (A000010) and Moebius function (A008683), respectively. - Cheng Zhang, Apr 02 2012
Extensions
Web link changed to more relevant page by Robert Munafo, Nov 16 2010
More terms from Cheng Zhang, Apr 02 2012