cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Cheng Zhang

Cheng Zhang's wiki page.

Cheng Zhang has authored 18 sequences. Here are the ten most recent ones:

A181917 The value of r at the bifurcation point of the first period-11 cycle of the logistic map f(x) = r*x*(1 - x).

Original entry on oeis.org

3, 6, 8, 1, 7, 2, 6, 6, 4, 5, 6, 5, 1, 7, 4, 3, 5, 6, 4, 8, 0, 5, 1, 4, 6, 6, 5, 6, 0, 4, 4, 1, 8, 2, 7, 5, 0, 4, 6, 2, 3, 4, 3, 9, 9, 4, 9, 2, 1, 3, 7, 4, 4, 6, 6, 1, 8, 3, 8, 0, 4, 4, 6, 8, 2, 8, 4, 3, 3, 8, 6, 3, 3, 7, 5, 9, 4, 1, 6, 0, 6, 7, 3, 5, 4, 7, 0, 0, 0, 4, 1, 0, 0, 9, 3, 4, 4, 2, 2, 4
Offset: 1

Author

Cheng Zhang, Apr 01 2012

Keywords

Comments

Root of a degree 1023*2 = 2046 polynomial.

Examples

			3.68172664565...
		

A181916 The value of r at the bifurcation point of the first period-10 cycle of the logistic map f(x) = r*x*(1 - x).

Original entry on oeis.org

3, 6, 0, 5, 9, 1, 6, 9, 3, 2, 2, 6, 9, 4, 2, 0, 8, 7, 3, 3, 9, 4, 7, 1, 4, 0, 8, 7, 3, 1, 8, 8, 7, 9, 0, 6, 6, 6, 2, 7, 5, 3, 2, 5, 6, 1, 3, 5, 2, 3, 3, 2, 5, 4, 8, 7, 0, 6, 7, 9, 2, 2, 1, 5, 8, 3, 6, 3, 8, 0, 1, 8, 2, 7, 8, 5, 5, 4, 1, 5, 9, 2, 1, 9, 9, 5, 3, 7, 9, 0, 8, 0, 7, 1, 6, 7, 3, 7, 8, 4
Offset: 1

Author

Cheng Zhang, Apr 01 2012

Keywords

Comments

Root of a degree 495*2 = 990 polynomial.

Examples

			3.605916932....
		

A181915 The value of r at the bifurcation point of the first period-9 cycle of the logistic map f(x) = r*x*(1 - x).

Original entry on oeis.org

3, 6, 8, 7, 2, 7, 4, 2, 1, 0, 5, 3, 6, 0, 0, 0, 6, 5, 6, 6, 1, 8, 5, 8, 1, 6, 5, 8, 4, 0, 8, 3, 4, 5, 0, 9, 7, 2, 1, 4, 4, 2, 7, 7, 1, 4, 0, 2, 3, 5, 6, 3, 6, 9, 9, 1, 2, 5, 1, 7, 9, 3, 4, 0, 9, 0, 6, 9, 3, 2, 4, 9, 2, 8, 8, 2, 9, 9, 1, 1, 9, 8, 3, 7, 6, 5, 7, 2, 6, 2, 4, 9, 5, 5, 6, 0, 9, 9, 8, 0
Offset: 1

Author

Cheng Zhang, Apr 01 2012

Keywords

Comments

Root of a degree 252*2 = 504 polynomial.

Examples

			3.6872742105...
		

A181913 The value of r at the bifurcation point of the first period-7 cycle of the logistic map f(x) = r*x*(1 - x).

Original entry on oeis.org

3, 7, 0, 2, 1, 5, 4, 9, 2, 8, 1, 5, 3, 5, 8, 8, 7, 7, 0, 2, 2, 2, 6, 1, 2, 3, 1, 2, 4, 2, 6, 4, 1, 3, 6, 5, 5, 9, 1, 8, 6, 0, 3, 4, 2, 5, 9, 4, 6, 7, 0, 0, 8, 1, 7, 5, 7, 5, 0, 4, 2, 7, 8, 9, 9, 3, 5, 4, 6, 2, 6, 6, 2, 0, 1, 5, 8, 4, 7, 0, 9, 4, 8, 9, 6, 9, 1, 3, 1, 9, 8, 8, 4, 4, 4, 9, 7, 1, 2, 6
Offset: 1

Author

Cheng Zhang, Apr 01 2012

Keywords

Comments

Root of a degree 63*2 = 126 polynomial.

Examples

			3.702154928...
		

Programs

  • Mathematica
    RealDigits[1 + Sqrt[1 + T] /.  NSolve[97862157334118736160267353892330031361 - 24275883989858911295570196314376441888 T + 11949756847721247033090755550100031472 T^2 - 7305759525507048491687489710934851842 T^3 + 4979912078948645588349153608449721856 T^4 - 3626559126667087845228068253830569728 T^5 + 2762422187660818660072532819743957008 T^6 - 1880399068065596812679449750312116489 T^7 + 1211937495049324668386707923551814144 T^8 - 759866924055411176816609501610145824 T^9 + 466557599052858501899389873590498576 T^10 - 280965824140635821336538113950238208 T^11 + 165486490562715543623266844910996960 T^12 - 95328733468347624721143436596991728 T^13 + 53730737569188242850960902675061540 T^14 - 29631735433275573295736684905520448 T^15 + 15982002519220233506297359288643328 T^16 - 8426732734596962888735943308790072 T^17 + 4341578043750972227945942898034432 T^18 - 2184193663643426076323203313845088 T^19 + 1072045107586559381111681621669072 T^20 - 512897616845631175409335289338708 T^21 + 239007878643078614755697662563584 T^22 - 108415793383957757795350567428064 T^23 + 47846270482094728117141329426032 T^24 - 20533661180243125068599265318144 T^25 + 8564906198781819799124804441280 T^26 - 3470264291680473250164651552944 T^27 + 1364870535759255877272510765950 T^28 - 520676891296255096870756895040 T^29 + 192488968788190123648373004064 T^30 - 68893036110679144584159460492 T^31 + 23845858487001866959614915840 T^32 - 7973063091544280406837942464 T^33 + 2572118763623299179804574640 T^34 - 799578831968317708137874814 T^35 + 239196982314145129630174464 T^36 - 68763448836715397230901728 T^37 + 18967378806716848507574128 T^38 - 5011787964028065103857408 T^39 + 1266306625250424841996640 T^40 - 305348843999288091901136 T^41 + 70117811645069434371412 T^42 - 15296768944400171831616 T^43 + 3162019501419003256064 T^44 - 617525327585232743224 T^45 + 113570706028361676288 T^46 - 19599347048769496032 T^47 + 3161153679144274672 T^48 - 474387152691155748 T^49 + 65902567592614400 T^50 - 8426269030832672 T^51 + 984947439372048 T^52 - 104425099694592 T^53 + 9947578647040 T^54 - 841756889488 T^55 + 62385936393 T^56 - 3978343968 T^57 + 213336304 T^58 - 9328642 T^59 + 318464 T^60 - 7936 T^61 + 128 T^62 - T^63 == 0, T, Reals, WorkingPrecision -> 200][[1]][[1]]][[1]]

A181912 The value of r at the bifurcation point of the first period-5 cycle of the logistic map f(x) = r*x*(1 - x).

Original entry on oeis.org

3, 7, 4, 1, 1, 2, 0, 7, 5, 6, 6, 3, 2, 4, 4, 0, 2, 0, 6, 3, 0, 7, 2, 9, 3, 8, 2, 3, 6, 7, 0, 9, 9, 8, 3, 7, 1, 0, 0, 0, 5, 0, 8, 4, 3, 2, 6, 5, 6, 2, 2, 5, 2, 5, 5, 2, 4, 9, 8, 1, 1, 5, 6, 5, 0, 7, 3, 0, 9, 0, 6, 8, 4, 5, 5, 7, 0, 1, 1, 8, 9, 4, 4, 7, 5, 0, 9, 8, 6, 2, 2, 9, 2, 2, 0, 0, 2, 5, 0, 4
Offset: 1

Author

Cheng Zhang, Apr 01 2012

Keywords

Comments

Root of a degree 15*2 = 30 polynomial.

Examples

			3.7411207566...
		

Programs

  • Mathematica
    RealDigits[1 + Sqrt[1 + T] /. NSolve[1291467969 - 313083144 T + 149426046 T^2 - 88548768 T^3 + 58697100 T^4 - 26978787 T^5 + 11351480 T^6 - 4444924 T^7 + 1519712 T^8 - 462764 T^9 + 118147 T^10 - 24008 T^11 + 3838 T^12 - 448 T^13 + 32 T^14 - T^15 == 0, T, Reals, WorkingPrecision -> 200][[1]][[1]]][[1]]

A181911 The value of r at the onset of the first period-13 cycle of the logistic map f(x) = r*x*(1 - x).

Original entry on oeis.org

3, 6, 7, 9, 7, 0, 2, 4, 5, 7, 7, 6, 5, 9, 1, 8, 4, 2, 3, 2, 0, 8, 6, 0, 0, 8, 4, 9, 2, 9, 7, 6, 2, 1, 2, 2, 9, 3, 1, 7, 9, 7, 0, 2, 7, 5, 2, 5, 8, 3, 7, 0, 0, 0, 3, 9, 2, 9, 5, 9, 4, 3, 8, 3, 2, 5, 9, 7, 2, 2, 4, 5, 6, 7, 3, 1, 7, 0, 1, 8, 5, 4, 3, 3, 1, 5, 8, 8, 6, 9, 1, 1, 2, 2, 9, 7, 5, 6, 5, 2
Offset: 1

Author

Cheng Zhang, Apr 01 2012

Keywords

Comments

Root of a degree 4083*2 = 9166 polynomial.

Examples

			3.6797024577659...
		

A181910 The value of r at the onset of the first period-12 cycle of the logistic map f(x) = r*x*(1 - x).

Original entry on oeis.org

3, 5, 8, 2, 0, 2, 3, 0, 0, 1, 0, 7, 3, 9, 6, 2, 1, 5, 1, 8, 3, 0, 8, 6, 5, 9, 9, 9, 7, 8, 9, 9, 5, 6, 8, 8, 7, 2, 0, 3, 0, 2, 7, 1, 5, 0, 2, 1, 8, 9, 6, 4, 0, 8, 1, 3, 0, 8, 0, 3, 5, 8, 7, 2, 8, 8, 3, 2, 6, 8, 3, 5, 4, 7, 2, 0, 1, 0, 1, 4, 7, 3, 4, 7, 2, 6, 6, 9, 9, 7, 0, 9, 6, 6, 3, 8, 9, 5, 2, 6
Offset: 1

Author

Cheng Zhang, Apr 01 2012

Keywords

Comments

Root of a degree 1959*2 = 3918 polynomial.

Examples

			3.58202300107...
		

A181909 The r value at the onset of the first period-11 cycle of the logistic map f(x) = r*x*(1 - x).

Original entry on oeis.org

3, 6, 8, 1, 7, 1, 6, 0, 1, 9, 3, 7, 2, 3, 8, 7, 3, 8, 1, 2, 4, 1, 1, 3, 8, 1, 8, 4, 6, 9, 0, 0, 9, 2, 4, 3, 4, 5, 6, 8, 6, 9, 3, 8, 0, 3, 7, 6, 5, 0, 7, 6, 5, 5, 1, 9, 1, 4, 7, 8, 4, 5, 4, 2, 7, 8, 3, 0, 5, 3, 1, 0, 8, 7, 6, 5, 7, 3, 9, 1, 9, 6, 1, 8, 6, 3, 3, 0, 4, 2, 4, 2, 2, 9, 9, 6, 3, 7, 6, 4
Offset: 1

Author

Cheng Zhang, Apr 01 2012

Keywords

Comments

Root of a degree 1013*2 = 2026 polynomial.

Examples

			3.6817160193...
		

A181906 The value of r at the onset of the first period-9 cycle of the logistic map f(x) = r*x*(1 - x).

Original entry on oeis.org

3, 6, 8, 7, 1, 9, 6, 8, 7, 3, 3, 1, 4, 7, 4, 2, 3, 5, 7, 1, 9, 6, 3, 8, 2, 5, 1, 1, 3, 6, 3, 3, 8, 8, 4, 5, 9, 9, 2, 0, 0, 0, 4, 9, 8, 5, 1, 4, 1, 9, 7, 2, 8, 3, 0, 6, 6, 2, 6, 5, 7, 7, 2, 1, 9, 2, 3, 0, 2, 5, 7, 8, 9, 3, 5, 4, 4, 6, 2, 7, 7, 9, 7, 2, 6, 6, 7, 3, 0, 9, 5, 8, 3, 5, 4, 3, 0, 2, 8, 9
Offset: 1

Author

Cheng Zhang, Apr 01 2012

Keywords

Comments

Root of a degree 240*2 = 480 polynomial.

Examples

			3.6871968733...
		

A181919 The value of r at the bifurcation point of the first period-13 cycle of the logistic map f(x) = r*x*(1 - x).

Original entry on oeis.org

3, 6, 7, 9, 7, 0, 3, 8, 4, 9, 8, 0, 3, 2, 9, 4, 7, 3, 0, 2, 7, 1, 7, 2, 8, 9, 8, 8, 1, 5, 7, 7, 3, 5, 7, 8, 2, 1, 1, 6, 7, 5, 6, 9, 1, 5, 0, 3, 3, 2, 5, 1, 5, 9, 3, 9, 6, 9, 6, 3, 4, 9, 5, 7, 8, 3, 3, 0, 7, 5, 2, 8, 5, 7, 4, 5, 0, 9, 8, 2, 6, 2, 4, 8, 2, 1, 0, 6, 9, 0, 5, 1, 7, 2, 2, 2, 4, 0, 3, 8
Offset: 1

Author

Cheng Zhang, Apr 01 2012

Keywords

Comments

Root of a degree 4095*2 = 8190 polynomial.

Examples

			3.6797038498...