cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006932 Number of permutations of [n] with at least one strong fixed point (a permutation p of {1,2,...,n} is said to have j as a strong fixed point if p(k) < j for k < j and p(k) > j for k > j).

Original entry on oeis.org

1, 1, 3, 10, 43, 223, 1364, 9643, 77545, 699954, 7013079, 77261803, 928420028, 12085410927, 169413357149, 2544367949634, 40758600588283, 693684669653911, 12499734669634036, 237734433597317987, 4759174459355303521
Offset: 1

Views

Author

Keywords

Comments

a(n) is also the number of permutation graphs with domination number one. See Definition 2.1, Lemma 2.3, and page 16 in the paper provided in the link by Theresa Baren, et al. - Daniel A. McGinnis, Oct 16 2018

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Stanley, R. P., Enumerative Combinatorics, Volume 1 (1986), p. 49.
  • K. Wayland, personal communication.

Crossrefs

Programs

  • Maple
    t1 := sum(n!*x^n, n=0..100): F := series(t1/(1+x*t1), x, 100): for i from 1 to 40 do printf(`%d, `, i!-coeff(F, x, i)) od: # James Sellers, Mar 13 2000
  • Mathematica
    m = 22; s = Sum[n!*x^n, {n, 0, m}]; Range[0, m-1]! - CoefficientList[ Series[ s/(1+x*s), {x, 0, m}], x][[1;;m]] // Rest (* Jean-François Alcover, Apr 28 2011, after Maple code *)

Formula

a(n) ~ 2 * (n-1)! * (1 - 1/(2*n) + 1/(2*n^2) + 9/(2*n^3) + 59/(2*n^4) + 237/n^5 + 2280/n^6 + 25182/n^7 + 625385/(2*n^8) + 4311329/n^9 + 65375943/n^10). - Vaclav Kotesovec, Mar 17 2015
a(n) = Sum_{k=1..n} (n-k)!*A145878(k-1,0). See the link by Theresa Baren, et al. - Daniel A. McGinnis, Oct 15 2018
a(n) = A003149(n-1) - Sum_{k=0..n-1} (n-k-1)!*a(k). (This follows immediately from the preceding formula since A145878(k,0) = k! - a(k).) - Pontus von Brömssen, Jul 10 2021
a(n) + A052186(n) = n! - Pontus von Brömssen, Jul 10 2021

Extensions

More terms from James Sellers, Mar 13 2000
Edited by Emeric Deutsch, Oct 29 2008