A333077
Number of maximal independent sets in the binary de Bruijn graph of order n.
Original entry on oeis.org
1, 2, 3, 8, 64, 2626, 4850838
Offset: 0
-
import networkx as nx
def deBruijn(n):
return nx.MultiDiGraph(((0, 0), (0, 0))) if n==0 else nx.line_graph(deBruijn(n-1))
def A333077(n):
return sum(1 for _ in nx.find_cliques(nx.complement(nx.Graph(deBruijn(n)))))
# replacement of a function removed from NetworkX by Ross Barnowski, Nov 12 2023
A333078
Number of maximum independent sets in the binary de Bruijn graph of order n.
Original entry on oeis.org
1, 2, 1, 6, 2, 44, 8
Offset: 0
A359994
Independence number of the 2-Fibonacci digraph of order n.
Original entry on oeis.org
1, 1, 2, 3, 6, 9, 16, 25, 44, 67, 115
Offset: 1
-
import networkx as nx
def F(n): return nx.DiGraph(((0,0),(0,1),(1,0))) if n == 1 else nx.line_graph(F(n-1))
def A359994(n): return nx.max_weight_clique(nx.complement(nx.Graph(F(n))),weight=None)[1]
A258935
Independence number of Keller graphs.
Original entry on oeis.org
4, 5, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 1
For G(2), a maximum independent set is {03,10,12,13,23}.
- W. Jarnicki, W. Myrvold, P. Saltzman, S. Wagon, Properties, proved and conjectured, of Keller, queen, and Mycielski graphs, Ars Mathematica Contemporanea 13:2 (2017) 427-460.
Showing 1-4 of 4 results.
Comments