cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A335362 Triangle T(n,d) read by rows: the number of mixed trees with n>=1 nodes and 0<=d

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 2, 5, 10, 8, 3, 12, 32, 40, 27, 6, 30, 99, 178, 187, 91, 11, 74, 298, 692, 1019, 854, 350, 23, 188, 890, 2538, 4751, 5692, 4074, 1376, 47, 478, 2627, 8886, 20260, 31188, 31856, 19602, 5743, 106, 1235, 7734, 30270, 81170, 152509, 200413, 177266, 96035, 24635
Offset: 1

Views

Author

R. J. Mathar, Jun 03 2020

Keywords

Examples

			The triangle starts
1;
1, 1;
1, 2, 3;
2, 5,10, 8;
3,12,32,40,27;
There are T(3,1)=2 mixed trees on 3 nodes with one directed edge (the edge can point towards the middle node or away from it).
		

Crossrefs

Cf. A000055 (column d=0), A000238 (diagonal d=n-1), A000106 (column d=1), A006965 (row sums), A335601 (subdiagonal d=n-2).

Programs

  • PARI
    \\ Here R(n) is rooted mixed trees as g.f.
    EulerMTS(p)={my(n=serprec(p,x)-1,vars=variables(p)); exp(sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i))}
    R(n) = {my(p=x+O(x^2)); for(n=2, n, p=x*EulerMTS(2*y*p + p)); p}
    T(n) = {my(p=R(n)); [Vecrev(p) | p<-Vec(p + (subst(subst(p + O(x*x^(n\2)), x, x^2), y, y^2) - (2*y+1)*p^2)/2)]}
    { my(A=T(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Mar 23 2023

Extensions

Completed row n=9. - R. J. Mathar, Jun 11 2020
Terms a(46) and beyond from Andrew Howroyd, Mar 23 2023

A136719 Number of labeled directed trees with n nodes.

Original entry on oeis.org

1, 3, 27, 432, 10125, 314928, 12252303, 573308928, 31381059609, 1968300000000, 139234453205859, 10968475320188928, 952427511967417317, 90388408459919044608, 9308590679915771484375, 1033947715493982426365952, 123217926482311669202664753, 15682720840457750419215679488
Offset: 1

Views

Author

Christian G. Bower, Jan 18 2008

Keywords

Comments

A directed tree is a tree where each edge is assigned one or both directions.

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 292 (4.1.58).

Crossrefs

Cf. A006965 (unlabeled version).

Programs

  • PARI
    seq(n)={Vec(serlaplace((-1/3)*lambertw(-3*x + O(x*x^n))/x))} \\ Andrew Howroyd, Feb 02 2020
    
  • PARI
    a(n) = {3*(3*n)^(n-2)} \\ Andrew Howroyd, Feb 02 2020

Formula

a(n) = A052756(n)/n.
a(n) = 3*(3*n)^(n-2). - Andrew Howroyd, Feb 02 2020

Extensions

Terms a(16) and beyond from Andrew Howroyd, Feb 02 2020

A038060 Number of trees with 3-colored nodes.

Original entry on oeis.org

1, 3, 6, 18, 75, 342, 1773, 9894, 58596, 362061, 2314119, 15185223, 101830986, 695253993, 4819762446, 33851833506, 240472935735, 1725315714729, 12487872432924, 91097741283408, 669227023979088, 4947500029023540, 36786363204267282, 274949933519917908
Offset: 0

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Crossrefs

Equals 3 * A006965(n).

Programs

  • Mathematica
    b[n_] := b[n] = If[n < 2, 3n, (Sum[Sum[b[d] d, {d, Divisors[j]}] b[n - j], {j, 1, n - 1}])/(n - 1)];
    a[n_] := If[n == 0, 1, b[n] - (Sum[b[k] b[n - k], {k, 0, n}] - If[Mod[n, 2] == 0, b[n/2], 0])/2];
    a /@ Range[0, 25] (* Jean-François Alcover, Nov 01 2020, after Alois P. Heinz in A006965 *)

Formula

G.f.: B(x) - B^2(x)/2 + B(x^2)/2, where B(x) is g.f. for A038059.
Showing 1-3 of 3 results.