A007010 Number of 4-voter voting schemes with n linearly ranked choices.
1, 12, 81, 372, 1332, 3984, 10420, 24540, 53145, 107436, 205065, 372792, 649936, 1092672, 1779408, 2817288, 4350105, 6567660, 9716905, 14114892, 20163924, 28368912, 39357396, 53902212, 72947329, 97636812, 129347505, 169725360, 220726080, 284659968, 364241728
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Daniel E. Loeb, On Games, Voting Schemes and Distributive Lattices. LaBRI Report 625-93, University of Bordeaux I, 1993. [broken link]
- Index entries for linear recurrences with constant coefficients, signature (6,-12,2,27,-36,0,36,-27,-2,12,-6,1).
Programs
-
Mathematica
LinearRecurrence[{6,-12,2,27,-36,0,36,-27,-2,12,-6,1},{1,12,81,372,1332,3984,10420,24540,53145,107436,205065,372792},40] (* Harvey P. Dale, Feb 12 2023 *)
-
PARI
Vec(x*(1+6*x+21*x^2+28*x^3+21*x^4+6*x^5+x^6)/((1+x)^3*(1-x)^9) + O(x^100)) \\ Colin Barker, Jan 07 2016
Formula
G.f.: x*(1+6*x+21*x^2+28*x^3+21*x^4+6*x^5+x^6)/((1+x)^3*(1-x)^9). - Ralf Stephan, Apr 23 2004
From Colin Barker, Jan 07 2016: (Start)
a(n) = (n^8+16*n^7+106*n^6+376*n^5+784*n^4+1024*n^3+864*n^2+384*n)/3840 for n even.
a(n) = (n^8+16*n^7+106*n^6+376*n^5+784*n^4+1024*n^3+894*n^2+504*n+135)/3840 for n odd.
(End)