cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007010 Number of 4-voter voting schemes with n linearly ranked choices.

Original entry on oeis.org

1, 12, 81, 372, 1332, 3984, 10420, 24540, 53145, 107436, 205065, 372792, 649936, 1092672, 1779408, 2817288, 4350105, 6567660, 9716905, 14114892, 20163924, 28368912, 39357396, 53902212, 72947329, 97636812, 129347505, 169725360, 220726080, 284659968, 364241728
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    LinearRecurrence[{6,-12,2,27,-36,0,36,-27,-2,12,-6,1},{1,12,81,372,1332,3984,10420,24540,53145,107436,205065,372792},40] (* Harvey P. Dale, Feb 12 2023 *)
  • PARI
    Vec(x*(1+6*x+21*x^2+28*x^3+21*x^4+6*x^5+x^6)/((1+x)^3*(1-x)^9) + O(x^100)) \\ Colin Barker, Jan 07 2016

Formula

G.f.: x*(1+6*x+21*x^2+28*x^3+21*x^4+6*x^5+x^6)/((1+x)^3*(1-x)^9). - Ralf Stephan, Apr 23 2004
From Colin Barker, Jan 07 2016: (Start)
a(n) = (n^8+16*n^7+106*n^6+376*n^5+784*n^4+1024*n^3+864*n^2+384*n)/3840 for n even.
a(n) = (n^8+16*n^7+106*n^6+376*n^5+784*n^4+1024*n^3+894*n^2+504*n+135)/3840 for n odd.
(End)