cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007022 Number of 4-regular polyhedra with n nodes.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 1, 3, 3, 11, 18, 58, 139, 451, 1326, 4461, 14554, 49957, 171159, 598102, 2098675, 7437910, 26490072, 94944685, 341867921, 1236864842, 4493270976, 16387852863, 59985464681, 220320405895, 811796327750, 3000183106119
Offset: 1

Views

Author

N. J. A. Sloane, Apr 28 1994

Keywords

Comments

Number of simple 4-regular 4-edge-connected 3-connected planar graphs; by Steinitz's theorem, every such graph corresponds to a single planar map up to orientation-reversing isomorphism. Equivalently, number of 3-connected quadrangulations of sphere with orientation-reversing isomorphisms permitted with n faces. - Andrey Zabolotskiy, Aug 22 2017

Examples

			For n=6, the sole 6-vertex 4-regular polyhedron is the octahedron. The corresponding 6-face quadrangulation is its dual graph, i. e., the cube graph.
From _Allan Bickle_, May 13 2024: (Start)
For n=8, the unique graph is the square of an 8-cycle.
For n=9, the unique graph is the dual of the Herschel graph. (End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000944 (all polyhedral graphs), A113204, A078672, A078666 (total number of simple 4-regular 4-edge-connected planar maps, including not 3-connected ones).
Cf. A072552, A078666, A111361, A292515 (4-regular planar graphs with restrictions).

Extensions

More terms from Hugo Pfoertner, Mar 22 2003
a(29) corrected by Brendan McKay, Jun 22 2006
Leading zeros prepended by Max Alekseyev, Sep 12 2016
Offset corrected by Andrey Zabolotskiy, Aug 22 2017