A007091 Numbers in base 5.
0, 1, 2, 3, 4, 10, 11, 12, 13, 14, 20, 21, 22, 23, 24, 30, 31, 32, 33, 34, 40, 41, 42, 43, 44, 100, 101, 102, 103, 104, 110, 111, 112, 113, 114, 120, 121, 122, 123, 124, 130, 131, 132, 133, 134, 140, 141, 142, 143, 144, 200, 201, 202, 203, 204, 210, 211, 212, 213, 214, 220, 221, 222, 223, 224, 230
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Nathaniel Johnston, Table of n, a(n) for n = 0..10000
- R. G. Wilson, V, Letter to N. J. A. Sloane, Sep. 1992
- Index entries for 10-automatic sequences.
Crossrefs
Programs
-
Maple
A007091 := proc(n) local l: if(n=0)then return 0: fi: l:=convert(n,base,5): return op(convert(l,base,10,10^nops(l))): end: seq(A007091(n),n=0..58); # Nathaniel Johnston, May 06 2011
-
Mathematica
Table[ FromDigits[ IntegerDigits[n, 5]], {n, 0, 60}]
-
PARI
a(n)=if(n<1,0,if(n%5,a(n-1)+1,10*a(n/5)))
-
PARI
apply( A007091(n)=fromdigits(digits(n,5)), [0..66]) \\ M. F. Hasler, Nov 18 2019
-
Python
from gmpy2 import digits def A007091(n): return int(digits(n,5)) # Chai Wah Wu, Dec 26 2021
Formula
a(0)=0 a(n)=10*a(n/5) if n==0 (mod 5) a(n)=a(n-1)+1 otherwise. - Benoit Cloitre, Dec 22 2002
a(n) = n + 1/2*Sum_{k >= 1} 10^k*floor(n/5^k). Cf. A037454, A037462 and A102491. - Peter Bala, Dec 01 2016
Comments