cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007175 Number of simplicial 4-clusters with n cells.

Original entry on oeis.org

1, 1, 1, 3, 8, 40, 211, 1406, 9754, 71591, 537699, 4131943, 32271490, 255690412, 2050376883, 16616721067, 135920429975, 1120999363012, 9313779465810, 77897862860818, 655433405297407, 5544948758579214, 47143948331898873, 402655164736641843, 3453509765971944236, 29734988097830504532
Offset: 1

Views

Author

Keywords

Comments

Hering article has error in the 20th term. - Robert A. Russell, Apr 20 2012

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    Table[Binomial[4 n, n]/(12 (3 n + 1) (3 n + 2)) +
      If[EvenQ[n],
       Binomial[2 n, n/2]/(8 (3 n/2 + 1)) +
        Binomial[2 n - 1, n/2 - 1]/((3 n/2 + 1)),
       Binomial[2 n - 1, n/2 - 1/2]/(2 (3 n/2 + 1/2))] +
      Switch[Mod[n, 3], 0, Binomial[4 n/3, n/3]/(3 (n + 1)), 1,
       2 Binomial[4 n/3 - 1/3, n/3 - 1/3]/(3 (n + 1)), 2,
       Binomial[4 n/3 - 2/3, n/3 - 2/3]/(n + 1)] +
      If[2 == Mod[n, 4], Binomial[n - 1, n/4 - 1/2]/(2 (3 n/4 + 1/2)), 0] +
      If[1 == Mod[n, 5], 2 Binomial[4 n/5 - 4/5, n/5 - 1/5]/(5 (3 n/5 + 2/5)),
       0], {n, 1, 30}] (* Robert A. Russell, Apr 20 2012 *)

Extensions

More terms from Robert A. Russell, Apr 20 2012