cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007245 McKay-Thompson series of class 3C for the Monster group.

Original entry on oeis.org

1, 248, 4124, 34752, 213126, 1057504, 4530744, 17333248, 60655377, 197230000, 603096260, 1749556736, 4848776870, 12908659008, 33161242504, 82505707520, 199429765972, 469556091240, 1079330385764, 2426800117504, 5346409013164
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 248*x + 4124*x^2 + 34752*x^3 + 213126*x^4 + 1057504*x^5 + 4530744*x^6 + ...
T3C = 1/q + 248*q^2 + 4124*q^5 + 34752*q^8 + 213126*q^11 + 1057504*q^14 + ...
		

References

  • G. Hoehn, Selbstduale Vertexoperatorsuperalgebren und das Babymonster, Bonner Mathematische Schriften, Vol. 286 (1996), 1-85.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000521.

Programs

  • Mathematica
    n = 21; f[u_, v_] = u^3 + v^3 - 54000 + 495*u*v - (u*v)^2;
    a[x_] = Sum[c[k] x^k, {k, 0, n}]; b[x_] = a[x^3]/x;
    eq[1] = # == 0 & /@ CoefficientList[x^6 f[b[x], b[x^2]], x] // Union // Rest; s[1] = Solve[eq[1][[1]], c[0]] // Last; Do[eq[k] = Rest[eq[k-1]] /. s[k-1] ; s[k] = Solve[eq[k][[1]], c[k-1]] // Last, {k, 2, n}]; Table[c[k], {k, 0, n-1}] /. Flatten @ Table[s[k], {k, 1, n}]
    (* Jean-François Alcover, May 17 2011, after Michael Somos *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ q, q^2]^8 + 256 q QPochhammer[ q, q^2]^-16, {q, 0, n}]; (* Michael Somos, Jun 15 2013 *)
    CoefficientList[Series[(65536 + x*QPochhammer[-1, x]^24) / (256*QPochhammer[-1, x]^8), {x, 0, 30}], x] (* Vaclav Kotesovec, Sep 23 2017 *)
    eta[q_]:= q^(1/24)*QPochhammer[q]; nmax = 55; f1A := (eta[q]/eta[q^2] )^24*(1 + 256*(eta[q^2]/eta[q])^24)^3; a:= CoefficientList[Series[(q*f1A + O[q]^nmax)^(1/3), {q,0,50}], q]; Table[a[[n]], {n,1,50}] (* G. C. Greubel, May 09 2018 *)
    a[ n_] := SeriesCoefficient[ With[ {m = InverseEllipticNomeQ[q]}, (1 + 14 m + m^2) / (1 - m) / (4 m (1 - m))^(1/3)] 4 q^(1/3), {q, 0, n}] // Simplify; (* Michael Somos, Sep 30 2019 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum( k=1, n, 240 * sigma(k, 3) * x^k, 1 + x * O(x^n)) / eta(x + x * O(x^n))^8, n))}; /* Michael Somos, Apr 17 2004 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (x * ellj( x + x^2 * O(x^n)))^(1/3), n))}; /* Michael Somos, May 26 2004 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^2 + A))^8 + 256 * x * (eta(x^2 + A) / eta(x + A))^16, n))}; /* Michael Somos, Jun 15 2013 */

Formula

In the notation of Gunning, Lectures on Modular Forms, pp. 53-54, expand E_2(z) / Delta(z)^(1/3).
Given g.f. A(x), then B(q) = A(q^3) / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u^3 + v^3 - 54000 + 495 * u*v - (u*v)^2. - Michael Somos, Apr 29 2006
Expansion of (phi(-x)^8 - (2 * phi(-x) * phi(x))^4 + 16 * phi(x)^8) / f(-x)^8 in powers of x where phi(), f() are Ramanujan theta functions.
Expansion of chi(-x)^8 + 256 * x / chi(-x)^16 in powers of x where chi() is a Ramanujan theta function. - Michael Somos, Jun 15 2013
Expansion of q^(1/3) * (eta(q) / eta(q^2))^8 + 256 * (eta(q^2) / eta(q))^16 in powers of q. - Michael Somos, Jun 15 2013
G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = f(t) where q = exp(2 Pi i t). - Michael Somos, Jun 15 2013
a(n) ~ exp(4*Pi*sqrt(n/3)) / (sqrt(2)*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Dec 04 2015
Convolution cube is A000521. (The modular j-function)- Michael Somos, Sep 30 2019