A007328 Difference between the number of 5-dimensional partitions of n and an approximation derived from binomial(n,4).
0, 0, 0, 0, 0, 15, 75, 310, 1060, 3281, 9564, 26719, 72239, 191569, 500797, 1299925, 3362473, 8697198, 22513878, 58352126, 151267141, 391728632, 1011734975, 2602330120, 6657204192, 16920629023, 42697311397, 106912113623, 265560809521, 654270114555
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100; alternative link.
- A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100. [Annotated scanned copy]
Formula
Extensions
a(11)-a(21) from Sean A. Irvine, Dec 18 2017
More terms from Amiram Eldar, May 11 2024