A007349 Primes with both 10 and -10 as primitive root.
17, 29, 61, 97, 109, 113, 149, 181, 193, 229, 233, 257, 269, 313, 337, 389, 433, 461, 509, 541, 577, 593, 701, 709, 821, 857, 937, 941, 953, 977, 1021, 1033, 1069, 1097, 1109, 1153, 1181, 1193, 1217, 1229, 1297, 1301, 1381, 1429, 1433, 1549, 1553, 1621, 1697, 1709, 1741, 1777, 1789, 1861, 1873, 1913, 1949
Offset: 1
Keywords
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 864.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Robert G. Wilson v, Letter to N. J. A. Sloane, Aug. 1993
- Index entries for primes by primitive root
Programs
-
Mathematica
pr=10; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == MultiplicativeOrder[-pr, # ] == #-1 &] Select[Prime[Range[5,200]],PrimitiveRoot[#,10]==10&&PrimitiveRoot[#,#-10] == #-10&] (* Harvey P. Dale, Oct 10 2019 *)
-
PARI
forprime(p=11,2000,if(znorder(Mod(10,p))==p-1&&znorder(Mod(-10,p))==p-1,print1(p,", "))); \\ Joerg Arndt, May 21 2025
Comments