A007360 Number of partitions of n into distinct and pairwise relatively prime parts.
1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 8, 9, 10, 11, 10, 13, 17, 19, 21, 22, 21, 24, 32, 37, 37, 38, 40, 45, 55, 65, 69, 66, 64, 75, 86, 100, 113, 107, 106, 122, 145, 165, 174, 167, 162, 179, 222, 253, 255, 255, 255, 273, 328, 373, 376, 369, 377, 406, 476, 553, 569, 537, 529
Offset: 1
Examples
From _Gus Wiseman_, Sep 23 2019: (Start) The a(1) = 1 through a(10) = 6 partitions (A = 10): (1) (2) (3) (4) (5) (6) (7) (8) (9) (A) (21) (31) (32) (51) (43) (53) (54) (73) (41) (321) (52) (71) (72) (91) (61) (431) (81) (532) (521) (531) (541) (721) (End)
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 1..750 (terms 1..350 from Alois P. Heinz)
- M. LeBrun & D. Hoey, Emails
Crossrefs
Programs
-
Mathematica
$RecursionLimit = 1000; b[n_, i_, s_] := b[n, i, s] = Module[{f}, If[n == 0 || i == 1, 1, If[i<2, 0, f = FactorInteger[i][[All, 1]]; b[n, i-1, Select[s, #Jean-François Alcover, Mar 20 2014, after Alois P. Heinz *) Table[Length[Select[IntegerPartitions[n],Length[#]==1||UnsameQ@@#&&CoprimeQ@@Union[#]&]],{n,0,30}] (* Gus Wiseman, Sep 23 2019 *)
Formula
Extensions
More precise definition from Vladeta Jovovic, Dec 11 2004
More terms from Pab Ter (pabrlos2(AT)yahoo.com), Nov 13 2005