cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007401 Add n-1 to n-th term of 'n appears n times' sequence (A002024).

Original entry on oeis.org

1, 3, 4, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76
Offset: 1

Views

Author

Keywords

Comments

Complement of A000096 = increasing sequence of positive integers excluding n*(n+3)/2. - Jonathan Vos Post, Aug 13 2005
As a triangle: (1; 3,4; 6,7,8; 10,11,12,13; ...), Row sums = A127736: (1, 7, 21, 46, 85, 141, 217, ...). - Gary W. Adamson, Oct 25 2007
Odd primes are a subsequence except 5, cf. A004139. - Reinhard Zumkeller, Jul 18 2011
A023532(a(n)) = 1. - Reinhard Zumkeller, Dec 04 2012
T(n,k) = ((n+k)^2+n-k)/2 - 1, n,k > 0, read by antidiagonals. - Boris Putievskiy, Jan 14 2013
A023531(a(n)) = 0. - Reinhard Zumkeller, Feb 14 2015

Examples

			From _Boris Putievskiy_, Jan 14 2013: (Start)
The start of the sequence as table:
   1,  3,  6, 10, 15, 21, 28, ...
   4,  7, 11, 16, 22, 29, 37, ...
   8, 12, 17, 23, 30, 38, 47, ...
  13, 18, 24, 31, 39, 48, 58, ...
  19, 25, 32, 40, 49, 59, 70, ...
  26, 33, 41, 50, 60, 71, 83, ...
  34, 42, 51, 61, 72, 84, 97, ...
  ...
The start of the sequence as triangle array read by rows:
   1;
   3,  4;
   6,  7,  8;
  10, 11, 12, 13;
  15, 16, 17, 18, 19;
  21, 22, 23, 24, 25, 26;
  28, 29, 30, 31, 32, 33, 34;
  ...
Row number r contains r numbers r*(r+1)/2, r*(r+1)/2+1, ..., r*(r+1)/2+r-1. (End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a007401 n = a007401_list !! n
    a007701_list = [x | x <- [0..], a023531 x == 0]
    -- Reinhard Zumkeller, Feb 14 2015, Dec 04 2012
    
  • Mathematica
    f[n_] := n + Floor[ Sqrt[2n] - 1/2]; Array[f, 66]; (* Robert G. Wilson v, Feb 13 2011 *)
  • PARI
    a(n)=n+floor(sqrt(n+n)-1/2) \\ Charles R Greathouse IV, Feb 13 2011
    
  • PARI
    for(m=1,9, for(n=m*(m+1)/2,(m^2+3*m-2)/2, print1(n", "))) \\ Charles R Greathouse IV, Feb 13 2011
    
  • Python
    from math import isqrt
    def A007401(n): return n-1+(isqrt(n<<3)+1>>1) # Chai Wah Wu, Oct 18 2022

Formula

From Boris Putievskiy, Jan 14 2013: (Start)
a(n) = A014132(n) - 1.
a(n) = A003057(n)^2 - A114327(n) - 1.
a(n) = ((t+2)^2 + i - j)/2-1, where
i = n-t*(t+1)/2,
j = (t*t+3*t+4)/2-n,
t = floor((-1+sqrt(8*n-7))/2). (End)