A007413 A squarefree (or Thue-Morse) ternary sequence: closed under 1->123, 2->13, 3->2. Start with 1.
1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 1, 2, 3
Offset: 1
Examples
Here are the first 5 stages in the construction of this sequence, together with Mma code, taken from Keranen's article. His alphabet is a,b,c rather than 1,2,3. productions = {"a" -> "abc ", "b" -> "ac ", "c" -> "b ", " " -> ""}; NestList[g, "a", 5] // TableForm a abc abc ac b abc ac b abc b ac abc ac b abc b ac abc ac b ac abc b abc ac b abc b ac abc ac b ac abc b abc ac b abc b ac abc b abc ac b ac
References
- Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
- J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 18.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- A. Thue, Über unendliche Zeichenreihen, Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiania, No. 7 (1906), 1-22.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
- Roger L. Bagula, Description of sequence as successive rows of a triangle
- James D. Currie, Non-repetitive words: Ages and essences, Combinatorica 16.1 (1996): 19-40. See p. 20.
- James D. Currie, Palindrome positions in ternary square-free words, Theoretical Computer Science, 396 (2008) 254-257.
- F. Michel Dekking, Morphisms, Symbolic Sequences, and Their Standard Forms, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.1.
- V. Keranen, New Abelian Square-Free DT0L-Languages over 4 Letters, Theoretical Computer Science, Volume 410, Issues 38-40, 6 September 2009, Pages 3893-3900.
- S. Kitaev and T. Mansour, Counting the occurrences of generalized patterns in words generated by a morphism, arXiv:math/0210170 [math.CO], 2002.
- Andrzej Tomski and Maciej Zakarczemny, A note on Browkin's and Cao's cancellation algorithm, Technical Transections 7/2018.
Crossrefs
Programs
-
Mathematica
Nest[ Flatten[ # /. {1 -> {1, 2, 3}, 2 -> {1, 3}, 3 -> {2}}] &, {1}, 7] (* Robert G. Wilson v, May 07 2005 *) 2 - Differences[ThueMorse[Range[0, 100]]] (* Paolo Xausa, Oct 25 2024 *)
-
PARI
{a(n) = if( n<1 || valuation(n, 2)%2, 2, 2 + (-1)^subst( Pol(binary(n)), x,1))};
-
Python
def A007413(n): return 2-(n.bit_count()&1)+((n-1).bit_count()&1) # Chai Wah Wu, Mar 03 2023
Comments