cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007421 Liouville's function: parity of number of primes dividing n (with multiplicity).

Original entry on oeis.org

2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Keywords

References

  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 279.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a007421 = (2 -) . (`mod` 2) . a001222 -- Reinhard Zumkeller, Nov 10 2011
  • Mathematica
    a[1] = 2; a[n_] := ((-1)^Total[FactorInteger[n][[All, 2]]] + 3)/2; (* or, from version 7 on : *) a[n_] := Boole[ EvenQ[ PrimeOmega[n]]] + 1; (* or *) a[n_] := (LiouvilleLambda[n] + 3)/2; a[1] = 2; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Apr 08 2013, updated Jan 27 2015 *)

Formula

a(n) = ((-1)^bigomega(n)+3)/2, where bigomega(n) is the number of prime divisors of the integer n counted with multiplicity.
a(n) = A065043(n) + 1.
a(n) = 2 - A001222(n) mod 2. - Reinhard Zumkeller, Nov 10 2011

Extensions

More terms from Vladeta Jovovic, Dec 01 2001