A007464 Shifts left under GCD-convolution with itself.
1, 1, 2, 3, 4, 6, 6, 11, 10, 18, 16, 20, 24, 26, 20, 45, 40, 38, 34, 62, 46, 54, 50, 84, 50, 102, 78, 104, 98, 90, 70, 189, 82, 130, 84, 120, 112, 130, 120, 232, 152, 234, 132, 130, 208, 282, 140, 462, 180, 210, 220, 418, 284, 334, 260, 520, 156, 334, 556
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210; arXiv:math/0205301 [math.CO], 2002.
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
Crossrefs
Cf. A178063 (partial sums).
Programs
-
Haskell
a007464 n = a007464_list !! n a007464_list = 1 : 1 : f [1,1] where f xs = y : f (y:xs) where y = sum $ zipWith gcd xs $ reverse xs -- Reinhard Zumkeller, Jan 21 2014
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add(igcd(a(i), a(n-1-i)), i=0..n-1)) end: seq(a(n), n=0..80); # Alois P. Heinz, Jun 22 2012
-
Mathematica
a[0]=1; a[1]=1; a[n_] := a[n] = Sum[GCD[a[k], a[n-k-1]], {k, 0, n-1}]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Sep 07 2012, after Alois P. Heinz *)
-
PARI
N=66; v=vector(N); v[1]=1; for(n=2,N, v[n]=sum(k=1,n-1, gcd(v[k],v[n-k])) ); v \\ Joerg Arndt, Jun 30 2013
-
Python
from math import gcd A007464_list = [1, 1] for n in range(1,10**3): A007464_list.append(sum(gcd(A007464_list[i],A007464_list[n-i]) for i in range(n+1))) # Chai Wah Wu, Dec 26 2014