A007473 Dimension of space of Vassiliev knot invariants of order n.
1, 1, 2, 3, 6, 10, 19, 33, 60, 104, 184, 316, 548
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Dror Bar-Natan, On the Vassiliev Knot Invariants, Topology 34 (1995) 423-472.
- Dror Bar-Natan, Bibliography of Vassiliev Invariants
- D. J. Broadhurst, Conjectured enumeration of Vassiliev invariants, arXiv:q-alg/9709031, 1997.
- Maksim Karev, On the primitive subspace of Lando framed graph bialgebra, arXiv:2307.00468 [math.CO], 2023.
- Jan Kneissler, The number of primitive Vassiliev invariants of degree up to 12, arXiv:q-alg/9706022, 1997.
- Eric Weisstein's World of Mathematics, Vassiliev Invariant.
- Index entries for sequences related to knots
Formula
G.f.: Product_{ m >= 1 } (1-y^m)^(-A007478(m)). - Andrey Zabolotskiy, Sep 19 2017
Broadhurst gives a conjectured explicit g.f. (different from A014595).
Extensions
Description corrected by Sergei Duzhin, Aug 29 2000