A007513 a(n) = initial prime of n consecutive primes such that first and last have same digit sum.
2, 523, 109, 79, 2, 13, 5, 127, 47, 17, 5, 127, 53, 17, 7, 67, 31, 37, 47, 37, 83, 11, 43, 19, 157, 2, 37, 5, 47, 5, 19, 67, 7, 29, 19, 53, 31, 73, 53, 29, 139, 13, 67, 83, 7, 47, 29, 17, 79, 7, 19, 37, 59, 43, 271, 19, 29, 181, 167, 59, 97, 5, 149, 7, 59, 337, 41, 53, 43, 127
Offset: 1
Examples
523 and 541 are first pair of consecutive primes with same sum of digits (10).
References
- J. R. Smart, A new function from a table of primes, J. Rec. Math., 7 (No. 4, 1974), 293-294.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- J. R. Smart, A new function from a table of primes, J. Recreational Mathematics 7.4 (1974), 293-294. (Annotated scanned copy)
Programs
-
Haskell
import Data.Function (on) import Data.List (elemIndex) import Data.Maybe (fromJust) a007513 n = a000040_list !! (fromJust $ elemIndex 0 $ zipWith ((-) `on` a007953) a000040_list $ drop (n-1) a000040_list) -- Reinhard Zumkeller, Aug 17 2011
-
Maple
A007953 := proc(n) local d; add(d,d=convert(n,base,10)) ; end proc: A007605 := proc(n) A007953(ithprime(n)) ; end proc: A007513 := proc(n) for i from 1 do if A007605(i) = A007605(i+n-1) then return ithprime(i) ; end if; end do ; end proc: seq(A007513(n),n=1..120) ; # R. J. Mathar, Dec 09 2009
-
Mathematica
prms=Prime[Range[2000]];First/@Table[First[Select[Partition[prms,n,1], Total[ IntegerDigits[ First[#]]]==Total[IntegerDigits[Last[#]]]&]], {n,75}] (* Harvey P. Dale, May 20 2011 *)
Extensions
Terms beyond a(57) by R. J. Mathar, Dec 09 2009