A007536 Numbers that are not the sum of 3 hexagonal numbers (probably finite).
4, 5, 9, 10, 11, 14, 19, 20, 23, 24, 25, 26, 32, 33, 37, 38, 39, 41, 42, 48, 50, 53, 54, 55, 59, 63, 64, 65, 69, 70, 76, 77, 80, 83, 85, 86, 89, 99, 102, 104, 108, 110, 113, 114, 115, 116, 123, 124, 128, 129, 130, 131, 140, 143, 144, 145, 146, 152, 161, 162, 167
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n=1..638
- R. K. Guy, Every number is expressible as the sum of how many polygonal numbers?, Amer. Math. Monthly 101 (1994), 169-172.
Programs
-
MATLAB
N = 10^7; % to get all terms up to N M = floor((sqrt(1+8*N)+1)/4); H = zeros(1,N); H((1:M) .*(2*(1:M)-1)) = 1; H2 = conv(H,H); H2 = H2(1:N); H3 = conv(H,H2); HS = H(3:N) + H2(2:N-1) + H3(1:N-2); find(HS==0) + 2 % Robert Israel, Jul 06 2016
-
Mathematica
notSumQ[n_] := Reduce[0 <= x <= y <= z && n == x*(2x - 1) + y*(2y - 1) + z*(2z - 1), {x, y, z}, Integers] === False; A007536 = Reap[ Do[ If[notSumQ[n], Print[n]; Sow[n]], {n, 1, 135}]][[2, 1]] (* Jean-François Alcover, Jun 27 2012 *)
Extensions
Corrected by T. D. Noe, Feb 14 2007
Comments