cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007538 A self-generating sequence: there are a(n) 3's between successive 2's.

Original entry on oeis.org

2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3
Offset: 1

Views

Author

Keywords

Comments

(a(n)) is the unique fixed point of the morphism 2->233, 3->2333 (immediate from its definition). - Michel Dekking, Feb 21 2017

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Haskell
    a007538 n = f n 2 2 2 where
       f 1 b   = b
       f n b 0 i = f (n - 1) 2 (a007538 i) (i + 1)
       f n b c i = f (n - 1) 3 (c - 1) i
    -- Reinhard Zumkeller, Feb 14 2012
  • Mathematica
    f[n_, b_, c_, i_] := f[n, b, c, i] = If[n == 1, b, If[c == 0 , f[n-1, 2, a[i], i+1], f[n-1, 3, c-1, i]]]; a[n_] := f[n, 2, 2, 2]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 15 2013, after Reinhard Zumkeller *)
    Table[Floor[n (1 + Sqrt@ 3)] - Floor[(n - 1) (1 + Sqrt@ 3)], {n, 120}] (* Michael De Vlieger, Oct 08 2016 *)
    t = {2};Table[If[t[[i]] == 2, AppendTo[t, #] & /@ {3, 3, 2}, AppendTo[t, #] & /@ {3, 3, 3, 2}], {i, 20}];t   (* Horst H. Manninger, Jan 11 2024 *)

Formula

a(n) = floor( n*(1+sqrt(3)) ) - floor( (n-1)*(1+sqrt(3)) ).
a(n) = f(n,2,2,2) with f(n,b,c,i) = if n=1 then b else (if c=0 then f(n-1,2,a(i),i+1) else f(n-1,3,c-1,i)). - Reinhard Zumkeller, May 25 2009
a(n) = A080757(n-1) + 1; a(n) = A188068(n) + 2. - Reinhard Zumkeller, Feb 14 2012
a(A188069(n)) = 2; a(A188070(n)) = 3. - Reinhard Zumkeller, Feb 14 2012