A007547 Number of steps to compute n-th prime in PRIMEGAME (slow version).
19, 69, 281, 710, 2375, 3893, 8102, 11361, 19268, 36981, 45680, 75417, 101354, 118093, 152344, 215797, 293897, 327571, 429229, 508284, 556494, 701008, 809381, 990746, 1274952, 1435957, 1531854, 1712701, 1820085, 2021938, 2835628, 3107393, 3549288, 3723821
Offset: 1
References
- D. Olivastro, Ancient Puzzles. Bantam Books, NY, 1993, p. 21.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Bert Dobbelaere, Table of n, a(n) for n = 1..1000
- J. H. Conway, FRACTRAN: a simple universal programming language for arithmetic, in T. M. Cover and Gopinath, eds., Open Problems in Communication and Computation, Springer, NY 1987, pp. 4-26.
- R. K. Guy, Conway's prime producing machine, Math. Mag. 56 (1983), no. 1, 26-33.
Programs
-
Haskell
import Data.List (elemIndices) a007547 n = a007547_list !! n a007547_list = tail $ elemIndices 2 $ map a006530 a007542_list -- Reinhard Zumkeller, Jan 24 2012
-
Maple
a:= proc(n) option remember; local l, p, m, k; l:= [17/91, 78/85, 19/51, 23/38, 29/33, 77/29, 95/23, 77/19, 1/17, 11/13, 13/11, 15/2, 1/7, 55/1]: if n=1 then b(0):= 2; a(0):= 0 else a(n-1) fi; p:= b(n-1); for m do for k while not type(p*l[k], integer) do od; p:= p*l[k]; if 2^ilog2(p)=p then break fi od: b(n):= p; m + a(n-1) end: seq(a(n), n=1..10); # Alois P. Heinz, May 01 2011
-
Mathematica
Clear[a]; a[n_] := a[n] = Module[{l, p, m, k}, l = {17/91, 78/85, 19/51, 23/38, 29/33, 77/29, 95/23, 77/19, 1/17, 11/13, 13/11, 15/2, 1/7, 55/1}; If[n == 1, b[0] = 2; a[0] = 0, a[n-1]]; p = b[n-1]; For[m=1, True, m++, For[k=1, !IntegerQ[p*l[[k]]], k++]; p = p*l[[k]]; If[2^(Length[IntegerDigits[p, 2]]-1) == p, Break[]]]; b[n] = p; m + a[n-1]]; Table[Print[a[n]]; a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 25 2014, after Alois P. Heinz *)
Extensions
More terms from Alois P. Heinz, May 01 2011