cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007547 Number of steps to compute n-th prime in PRIMEGAME (slow version).

Original entry on oeis.org

19, 69, 281, 710, 2375, 3893, 8102, 11361, 19268, 36981, 45680, 75417, 101354, 118093, 152344, 215797, 293897, 327571, 429229, 508284, 556494, 701008, 809381, 990746, 1274952, 1435957, 1531854, 1712701, 1820085, 2021938, 2835628, 3107393, 3549288, 3723821
Offset: 1

Views

Author

Keywords

References

  • D. Olivastro, Ancient Puzzles. Bantam Books, NY, 1993, p. 21.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a007547 n = a007547_list !! n
    a007547_list = tail $ elemIndices 2 $ map a006530 a007542_list
    -- Reinhard Zumkeller, Jan 24 2012
  • Maple
    a:= proc(n) option remember; local l, p, m, k;
          l:= [17/91, 78/85, 19/51, 23/38, 29/33, 77/29, 95/23,
               77/19, 1/17, 11/13, 13/11, 15/2, 1/7, 55/1]:
          if n=1 then b(0):= 2; a(0):= 0 else a(n-1) fi;
          p:= b(n-1);
          for m do for k while not type(p*l[k], integer) do od;
                   p:= p*l[k];
                   if 2^ilog2(p)=p then break fi
          od:
          b(n):= p;
          m + a(n-1)
        end:
    seq(a(n), n=1..10);  # Alois P. Heinz, May 01 2011
  • Mathematica
    Clear[a]; a[n_] := a[n] = Module[{l, p, m, k}, l = {17/91, 78/85, 19/51, 23/38, 29/33, 77/29, 95/23, 77/19, 1/17, 11/13, 13/11, 15/2, 1/7, 55/1}; If[n == 1, b[0] = 2; a[0] = 0, a[n-1]]; p = b[n-1]; For[m=1, True, m++, For[k=1, !IntegerQ[p*l[[k]]], k++]; p = p*l[[k]]; If[2^(Length[IntegerDigits[p, 2]]-1) == p, Break[]]]; b[n] = p; m + a[n-1]]; Table[Print[a[n]]; a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 25 2014, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, May 01 2011