cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007548 Shifts 3 places left under exponentiation.

Original entry on oeis.org

1, 1, 1, 1, 2, 5, 15, 53, 213, 961, 4808, 26405, 157965, 1022573, 7122441, 53118601, 422362118, 3566967917, 31887812715, 300848966213, 2987359924149, 31143724848889, 340113005563268, 3882897830626949, 46254432194746377, 573938743829923349, 7406289665830324689
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    exptr:= proc(p) local g; g:= proc(n) option remember; p(n) +add(binomial(n-1, k-1) *p(k) *g(n-k), k=1..n-1) end: end: b:= exptr(a): a:= n-> `if`(n<=2, 1, b(n-3)): seq(a(n), n=1..30); # Alois P. Heinz, Oct 07 2008
  • Mathematica
    Exptr[p_] := Module[{g}, g[n_] := g[n] = p[n] + Sum [Binomial[n-1, k-1]*p[k]*g[n-k], {k, 1, n-1}]; g]; b = Exptr [a]; a[n_] := If[n <= 2, 1, b[n-3]]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, May 06 2014, after Alois P. Heinz *)

Formula

E.g.f. A(x) satisfies differential equation A'''(x)=exp(A(x)), A'(0)=1, A''(0)=1, A'''(0)=1. - Vladimir Kruchinin, Nov 19 2011