A007560 Number of planted identity trees where non-root, non-leaf nodes an even distance from root are of degree 2.
1, 1, 1, 1, 2, 2, 4, 6, 10, 17, 29, 51, 89, 159, 284, 512, 930, 1692, 3101, 5698, 10515, 19464, 36143, 67296, 125622, 235050, 440756, 828142, 1558955, 2939761, 5552744, 10504222, 19899760, 37750091, 71704061, 136361602, 259618770, 494821629, 944074665
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
- Index entries for sequences related to rooted trees
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(a(i), j)*b(n-i*j, i-1), j=0..n/i))) end: a:= n-> `if`(n<2, n, b(n-2, n-2)): seq(a(n), n=1..50); # Alois P. Heinz, May 19 2013
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[a[i], j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := If[n<2, n, b[n-2, n-2]]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Jan 27 2014, after Alois P. Heinz *)
Formula
Shifts 2 places left under weigh transform.
a(n) ~ c * d^n / n^(3/2), d = 1.983229991815043367273184141..., c = 0.5857451140002020594085469... . - Vaclav Kotesovec, Aug 25 2014
G.f.: x + x^2 * Product_{n>=1} (1 + x^n)^a(n). - Ilya Gutkovskiy, May 09 2019
Extensions
Better description from Christian G. Bower, May 15 1998