A007578 Number of Young tableaux of height <= 7.
1, 1, 2, 4, 10, 26, 76, 232, 763, 2611, 9415, 35135, 136335, 544623, 2242618, 9463508, 40917803, 180620411, 813405580, 3728248990, 17377551032, 82232982872, 394742985974, 1919885633178, 9453682648281, 47086636037601, 237071351741426, 1205689994416252
Offset: 0
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Andrei Asinowski, Axel Bacher, Cyril Banderier, Bernhard Gittenberger, Analytic combinatorics of lattice paths with forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata, Laboratoire d'Informatique de Paris Nord (LIPN 2019).
- F. Bergeron, L. Favreau and D. Krob, Conjectures on the enumeration of tableaux of bounded height, Preprint. (Annotated scanned copy)
- F. Bergeron, L. Favreau and D. Krob, Conjectures on the enumeration of tableaux of bounded height, Discrete Math, vol. 139, no. 1-3 (1995), 463-468.
- Juan B. Gil, Peter R. W. McNamara, Jordan O. Tirrell, Michael D. Weiner, From Dyck paths to standard Young tableaux, arXiv:1708.00513 [math.CO], 2017.
- Index entries for sequences related to Young tableaux.
Crossrefs
Column k=7 of A182172. - Alois P. Heinz, May 30 2012
Programs
-
Maple
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j+ add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end: g:= proc(n, i, l) option remember; `if`(n=0, h(l), `if`(i=1, h([l[], 1$n]), `if`(i<1, 0, g(n, i-1, l) +`if`(i>n, 0, g(n-i, i, [l[], i]))))) end: a:= n-> g(n, 7, []): seq(a(n), n=0..30); # Alois P. Heinz, Apr 10 2012 # second Maple program a:= proc(n) option remember; `if`(n<4, [1, 1, 2, 4][n+1], ((4*n^3+78*n^2+424*n+495)*a(n-1) +(n-1)*(34*n^2+280*n+305)*a(n-2) -2*(n-1)*(n-2)*(38*n+145)*a(n-3) -105*(n-1)*(n-2)*(n-3)*a(n-4)) / ((n+6)*(n+10)*(n+12))) end: seq(a(n), n=0..30); # Alois P. Heinz, Oct 12 2012
-
Mathematica
RecurrenceTable[{105 (-3+n) (-2+n) (-1+n) a[-4+n]+2 (-2+n) (-1+n) (145+38 n) a[-3+n]-(-1+n) (305+280 n+34 n^2) a[-2+n]+(-495-424 n-78 n^2-4 n^3) a[-1+n]+(6+n) (10+n) (12+n) a[n]==0,a[1]==1,a[2]==2,a[3]==4,a[4]==10}, a, {n, 20}] (* Vaclav Kotesovec, Sep 11 2013 *)
Formula
a(n) ~ 45/32 * 7^(n+21/2)/(Pi^(3/2)*n^(21/2)). - Vaclav Kotesovec, Sep 11 2013
Extensions
More terms from Alois P. Heinz, Apr 10 2012
Comments