cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007579 Number of Young tableaux of height <= 6.

Original entry on oeis.org

1, 1, 2, 4, 10, 26, 76, 231, 756, 2556, 9096, 33231, 126060, 488488, 1948232, 7907185, 32831370, 138321690, 593610420, 2579109780, 11377862340, 50726936820, 229078351992, 1043999256966, 4810194384348, 22340617618860, 104742353862360, 494547143860035
Offset: 0

Views

Author

Keywords

Comments

Also the number of n-length words w over 6-ary alphabet {a1,a2,...,a6} such that for every prefix z of w we have #(z,a1) >= #(z,a2) >= ... >= #(z,a6), where #(z,x) counts the letters x in word z. - Alois P. Heinz, May 30 2012

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=6 of A182172. - Alois P. Heinz, May 30 2012

Programs

  • Maple
    h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
          +add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
        end:
    g:= proc(n, i, l) option remember;
          `if`(n=0, h(l), `if`(i=1, h([l[], 1$n]), `if`(i<1, 0,
            g(n, i-1, l) +`if`(i>n, 0, g(n-i, i, [l[], i])))))
        end:
    a:= n-> g(n, 6, []):
    seq(a(n), n=0..30); # Alois P. Heinz, Apr 18 2012
    # second Maple program:
    a:= proc(n) option remember;
          `if`(n<4, [1, 1, 2, 4][n+1], ((20*n^2+184*n+336)*a(n-1)
           +4*(n-1)*(10*n^2+58*n+33)*a(n-2) -144*(n-1)*(n-2)*a(n-3)
           -144*(n-1)*(n-2)*(n-3)*a(n-4))/ ((n+5)*(n+8)*(n+9)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 12 2012
  • Mathematica
    RecurrenceTable[{144 (-3+n) (-2+n) (-1+n) a[-4+n]+144 (-2+n) (-1+n) a[-3+n]-4 (-1+n) (33+58 n+10 n^2) a[-2+n]-4 (84+46 n+5 n^2) a[-1+n]+(5+n) (8+n) (9+n) a[n]==0,a[1]==1,a[2]==2,a[3]==4,a[4]==10}, a, {n, 20}] (* Vaclav Kotesovec, Sep 11 2013 *)

Formula

a(n) ~ 3/4 * 6^(n+15/2)/(Pi^(3/2)*n^(15/2)). - Vaclav Kotesovec, Sep 11 2013
D-finite with recurrence +(n+5)*(n+9)*(n+8)*a(n) +4*(-5*n^2-46*n-84)*a(n-1) -4*(n-1)*(10*n^2+58*n+33)*a(n-2) +144*(n-1)*(n-2)*a(n-3) +144*(n-1)*(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Sep 23 2021

Extensions

More terms from Alois P. Heinz, Apr 10 2012