cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A090251 a(n) =29a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 29.

Original entry on oeis.org

2, 29, 839, 24302, 703919, 20389349, 590587202, 17106639509, 495501958559, 14352450158702, 415725552643799, 12041688576511469, 348793243166188802, 10102962363242963789, 292637115290879761079, 8476373381072270107502
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 24 2004

Keywords

Comments

a(n+1)/a(n) converges to ((29+sqrt(837))/2) =28.9654761... Lim a(n)/a(n+1) as n approaches infinity = 0.0345238... =2/(29+sqrt(837)) =(29-sqrt(837))/2. Lim a(n+1)/a(n) as n approaches infinity = 28.9654761... = (29+sqrt(837))/2=2/(29-sqrt(837)). Lim a(n)/a(n+1) = 29 - Lim a(n+1)/a(n).
A Chebyshev T-sequence with a Diophantine property.
a(n) gives the general (nonnegative integer) solution of the Pell equation a^2 - 93*(3*b)^2 =+4 with companion sequence b(n)=A097782(n+1), n>=0.

Examples

			a(4) =703919 = 29a(3) - a(2) = 29*24302 - 839= ((29+sqrt(837))/2)^4 + ((29-sqrt(837))/2)^4 = 703918.99999857 + 0.00000142 =703919.
(x,y) = (2;0), (29;1), (839;29), (24302,840), ..., give the
nonnegative integer solutions to x^2 - 93*(3*y)^2 =+4.
		

References

  • O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).

Crossrefs

a(n)=sqrt(4 + 93*(3*A097782(n-1))^2), n>=1.
Cf. A077428, A078355 (Pell +4 equations).
Cf. A090248 for 2*T(n, 27/2).

Programs

  • Mathematica
    a[0] = 2; a[1] = 29; a[n_] := 29a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 15}] (* Robert G. Wilson v, Jan 30 2004 *)
    LinearRecurrence[{29,-1},{2,29},30] (* Harvey P. Dale, May 28 2013 *)
  • Sage
    [lucas_number2(n,29,1) for n in range(0,16)] # Zerinvary Lajos, Jun 27 2008

Formula

a(n) =29a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 29. a(n) = ((29+sqrt(837))/2)^n + ((29-sqrt(837))/2)^n, (a(n))^2 =a(2n)+2.
a(n) = S(n, 29) - S(n-2, 29) = 2*T(n, 29/2) with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. S(n, 27)=A097781(n). U-, resp. T-, are Chebyshev's polynomials of the second, resp. first, kind. See A049310 and A053120.
a(n) = ap^n + am^n, with ap := (29+3*sqrt(93))/2 and am := (29-3*sqrt(93))/2.
G.f.: (2-29*x)/(1-29*x+x^2).

Extensions

More terms from Robert G. Wilson v, Jan 30 2004
Chebyshev and Pell comments from Wolfdieter Lang, Aug 31 2004

A068066 The sum or half the sum of n consecutive primes starting at a(n) is prime.

Original entry on oeis.org

2, 2, 5, 2, 5, 2, 17, 83, 3, 3, 5, 2, 29, 2, 3, 11, 3, 3, 11, 23, 7, 5, 7, 11, 5, 3, 7, 3, 13, 3, 13, 5, 7, 17, 5, 3, 5, 73, 13, 5, 7, 5, 7, 5, 7, 29, 7, 53, 11, 29, 17, 31, 3, 23, 3, 47, 97, 5, 29, 2, 3, 37, 13, 2, 3, 17, 19, 5, 19, 71, 3, 47, 5, 19, 3, 59, 23, 89, 7, 19, 11, 37, 53, 3
Offset: 1

Views

Author

Robert G. Wilson v, Feb 16 2002

Keywords

Comments

This eliminates the impossibles out of A007610 and the 'or' in the title is the exclusive or.

Examples

			a(3) = 5 because 5+7+11 = prime 23 and a(10) = 3 because 3+5+7+11+13+17+19+23+29+31 = 158 and half that or 79 is a prime.
		

Crossrefs

Cf. A007610.

Programs

  • Mathematica
    Do[k = n; a = Table[Prime[i], {i, 1, n} ]; While[ !PrimeQ[Plus @@ a] && !PrimeQ[Plus @@ a/2], k++; a = Drop[a, 1]; a = Append[a, Prime[k]]]; Print[a[[1]]], {n, 1, 100} ]
Showing 1-2 of 2 results.