A007620 Numbers m such that every k <= m is a sum of proper divisors of m (for m>1).
1, 6, 12, 18, 20, 24, 28, 30, 36, 40, 42, 48, 54, 56, 60, 66, 72, 78, 80, 84, 88, 90, 96, 100, 104, 108, 112, 120, 126, 132, 140, 144, 150, 156, 160, 162, 168, 176, 180, 192, 196, 198, 200, 204, 208, 210, 216, 220, 224, 228, 234, 240, 252, 260, 264, 270, 272, 276, 280, 288, 294, 300, 304, 306
Offset: 1
References
- Ross Honsberger, Mathematical Gems, M.A.A., 1973, p. 113.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
- A. K. Srinivasan, Practical numbers, Current Science, 17 (1948), 179-180.
- B. M. Stewart, Sums of distinct divisors, American Journal of Mathematics, Vol. 76, No. 4 (1954), pp. 779-785.
- Robert G. Wilson v, Letter to N. J. A. Sloane, date unknown.
Programs
-
Haskell
a007620 n = a007620_list !! (n-1) a007620_list = 1 : filter (\x -> all (p $ a027751_row x) [1..x]) [2..] where p _ 0 = True p [] _ = False p ds'@(d:ds) m = d <= m && (p ds (m - d) || p ds m) -- Reinhard Zumkeller, Feb 23 2014
-
Mathematica
DeleteCases[ A005835, q_/; (Count[ CoefficientList[ Series[ Times@@( (1+z^#)& /@ Divisors[ q ] ), {z, 0, q} ], z ], 0 ]>0) ] (* Wouter Meeussen *)
-
Python
from itertools import count, islice from sympy import divisors def A007620_gen(startvalue=1): # generator of terms >= startvalue for m in count(max(startvalue,1)): if m == 1: yield 1 else: c = {0} for d in divisors(m,generator=True): if d < m: c |= {a+d for a in c} if all(a in c for a in range(m+1)): yield m A007620_list = list(islice(A007620_gen(),30)) # Chai Wah Wu, Jul 06 2023
Comments