cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007623 Integers written in factorial base.

Original entry on oeis.org

0, 1, 10, 11, 20, 21, 100, 101, 110, 111, 120, 121, 200, 201, 210, 211, 220, 221, 300, 301, 310, 311, 320, 321, 1000, 1001, 1010, 1011, 1020, 1021, 1100, 1101, 1110, 1111, 1120, 1121, 1200, 1201, 1210, 1211, 1220, 1221, 1300, 1301, 1310, 1311, 1320, 1321, 2000, 2001, 2010
Offset: 0

Views

Author

Keywords

Comments

Places reading from right have values (1, 2, 6, 24, 120, ...) = factorials.
Also the reversed inversion vectors for the list of all finite permutations in reversed lexicographic order: A055089.
This concatenated representation is unsatisfactory for large n (above 36287999), when coefficients of 10 or greater start to appear. For these large numbers the representation given in A108731 is better. - N. J. A. Sloane, Jun 04 2012
For n < 10*10!-1, a(n) = concatenation of n-th row of triangle in A108731. - Reinhard Zumkeller, Jun 04 2012
a(n) = A049345(n) for n=0..23. - Reinhard Zumkeller, Jan 05 2014
For n = 36288000 = 10 * 10!, the digits in factorial base are {10, 0, 0, 0, 0, 0, 0, 0, 0, 0}. - Michael De Vlieger, Oct 11 2015, corrected and edited by M. F. Hasler, Nov 27 2018
The alt text in xkcd comic #2835 describes "Numbers larger than about 3.6 million" to be illegal. See links. - David Cleaver, Sep 30 2023

Examples

			a(47) = 1321 because 47 = 1*4! + 3*3! + 2*2! + 1*1!
		

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 2, p. 192.
  • F. Smarandache, Definitions solved and unsolved problems, conjectures and theorems in number theory and geometry, edited by M. Perez, Xiquan Publishing House, 2000.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000142, A034968 (sum of digits), A060130 (number of nonzero digits), A099563 (the most significant digit).
Cf. also A055089, A055881, A060112, A060495. Permutation of A064039.
See index entry "factorial base representation" for many more related sequences.
See also primorial base A049345.

Programs

  • Haskell
    a007623 n | n <= 36287999 = read $ concatMap show (a108731_row n) :: Int
              | otherwise     = error "representation would be ambiguous"
    -- Reinhard Zumkeller, Jun 04 2012
    (Scheme, R6RS standard) (define (A007623 n) (let loop ((n n) (s 0) (p 1) (i 2)) (if (zero? n) s (let ((d (mod n i))) (loop (/ (- n d) i) (+ (* p d) s) (* 10 p) (+ 1 i)))))) ;; In older Schemes use modulo instead of mod. - Antti Karttunen, Feb 13 2016
    
  • Maple
    a := n -> if nargs<2 then a(n,2) elif n
    				
  • Mathematica
    factBaseIntDs[n_] := Module[{m, i, len, dList, currDigit}, i = 1; While[n > i!, i++ ]; m = n; len = i; dList = Table[0, {len}]; Do[ currDigit = 0; While[m >= j!, m = m - j!; currDigit++ ]; dList[[len - j + 1]] = currDigit, {j, i, 1, -1}]; If[dList[[1]] == 0, dList = Drop[dList, 1]]; dList]; Table[FromDigits[factBaseIntDs[n]], {n, 0, 50}] (* Alonso del Arte, May 03 2006 *)
    lim = 50; m = 1; While[Factorial@ m < lim, m++]; m; IntegerDigits[#, MixedRadix[Reverse@ Range[2, m]]] & /@ Range@ lim (* Michael De Vlieger, Oct 11 2015, Version 10.2 *)
  • PARI
    apply( a(n,p=2)=if(nM. F. Hasler, Mar 27 2007; minor edit Nov 26 2018
    
  • Python
    def a(n, p=2): return n if n

Extensions

More terms from R. K. Guy