A007623 Integers written in factorial base.
0, 1, 10, 11, 20, 21, 100, 101, 110, 111, 120, 121, 200, 201, 210, 211, 220, 221, 300, 301, 310, 311, 320, 321, 1000, 1001, 1010, 1011, 1020, 1021, 1100, 1101, 1110, 1111, 1120, 1121, 1200, 1201, 1210, 1211, 1220, 1221, 1300, 1301, 1310, 1311, 1320, 1321, 2000, 2001, 2010
Offset: 0
Examples
a(47) = 1321 because 47 = 1*4! + 3*3! + 2*2! + 1*1!
References
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 2, p. 192.
- F. Smarandache, Definitions solved and unsolved problems, conjectures and theorems in number theory and geometry, edited by M. Perez, Xiquan Publishing House, 2000.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- M. F. Hasler (terms 0 .. 1000) & Antti Karttunen, Table of n, a(n) for n = 0..40320
- Italo J. Dejter, A numeral system for the middle levels, arXiv:1012.0995 [math.CO], 2010-2015.
- Italo J. Dejter, Dihedral-symmetry middle-levels problem via a Catalan system of numeration, preprint, 2015.
- Italo J. Dejter, Ordering the Levels Lk and Lk+1 of B2k+1, preprint, 2015-2017.
- P. Hecht, Post-Quantum Cryptography: S_381 Cyclic Subgroup of High Order, International Journal of Advanced Engineering Research and Science (IJAERS, 2017) Vol. 4, Issue 6, 78-86.
- C. A. Laisant, Sur la numération factorielle, application aux permutations, Bulletin de la Société Mathématique de France, 16 (1888), p. 176-183.
- Randall Munroe, Factorial Numbers, xkcd Web Comic #2835, Sep 29 2023.
- Wikipedia, Factorial base
- Index entries for sequences related to factorial base representation
Crossrefs
Programs
-
Haskell
a007623 n | n <= 36287999 = read $ concatMap show (a108731_row n) :: Int | otherwise = error "representation would be ambiguous" -- Reinhard Zumkeller, Jun 04 2012 (Scheme, R6RS standard) (define (A007623 n) (let loop ((n n) (s 0) (p 1) (i 2)) (if (zero? n) s (let ((d (mod n i))) (loop (/ (- n d) i) (+ (* p d) s) (* 10 p) (+ 1 i)))))) ;; In older Schemes use modulo instead of mod. - Antti Karttunen, Feb 13 2016
-
Maple
a := n -> if nargs<2 then a(n,2) elif n
-
Mathematica
factBaseIntDs[n_] := Module[{m, i, len, dList, currDigit}, i = 1; While[n > i!, i++ ]; m = n; len = i; dList = Table[0, {len}]; Do[ currDigit = 0; While[m >= j!, m = m - j!; currDigit++ ]; dList[[len - j + 1]] = currDigit, {j, i, 1, -1}]; If[dList[[1]] == 0, dList = Drop[dList, 1]]; dList]; Table[FromDigits[factBaseIntDs[n]], {n, 0, 50}] (* Alonso del Arte, May 03 2006 *) lim = 50; m = 1; While[Factorial@ m < lim, m++]; m; IntegerDigits[#, MixedRadix[Reverse@ Range[2, m]]] & /@ Range@ lim (* Michael De Vlieger, Oct 11 2015, Version 10.2 *)
-
PARI
apply( a(n,p=2)=if(n
-
Python
def a(n, p=2): return n if n
Extensions
More terms from R. K. Guy
Comments